Step |
Hyp |
Ref |
Expression |
1 |
|
1ne2 |
|- 1 =/= 2 |
2 |
1
|
nesymi |
|- -. 2 = 1 |
3 |
|
2re |
|- 2 e. RR |
4 |
|
0le2 |
|- 0 <_ 2 |
5 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
6 |
3 4 5
|
mp2an |
|- ( abs ` 2 ) = 2 |
7 |
6
|
eqeq1i |
|- ( ( abs ` 2 ) = 1 <-> 2 = 1 ) |
8 |
2 7
|
mtbir |
|- -. ( abs ` 2 ) = 1 |
9 |
8
|
intnan |
|- -. ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) |
10 |
|
zringunit |
|- ( 2 e. ( Unit ` ZZring ) <-> ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) ) |
11 |
9 10
|
mtbir |
|- -. 2 e. ( Unit ` ZZring ) |
12 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
13 |
|
eqid |
|- ( Unit ` ZZring ) = ( Unit ` ZZring ) |
14 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
15 |
12 13 14
|
isdrng |
|- ( ZZring e. DivRing <-> ( ZZring e. Ring /\ ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) ) |
16 |
|
2z |
|- 2 e. ZZ |
17 |
|
2ne0 |
|- 2 =/= 0 |
18 |
|
eldifsn |
|- ( 2 e. ( ZZ \ { 0 } ) <-> ( 2 e. ZZ /\ 2 =/= 0 ) ) |
19 |
16 17 18
|
mpbir2an |
|- 2 e. ( ZZ \ { 0 } ) |
20 |
|
id |
|- ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) |
21 |
19 20
|
eleqtrrid |
|- ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> 2 e. ( Unit ` ZZring ) ) |
22 |
15 21
|
simplbiim |
|- ( ZZring e. DivRing -> 2 e. ( Unit ` ZZring ) ) |
23 |
11 22
|
mto |
|- -. ZZring e. DivRing |
24 |
23
|
nelir |
|- ZZring e/ DivRing |