Metamath Proof Explorer


Theorem zringndrg

Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021)

Ref Expression
Assertion zringndrg
|- ZZring e/ DivRing

Proof

Step Hyp Ref Expression
1 1ne2
 |-  1 =/= 2
2 1 nesymi
 |-  -. 2 = 1
3 2re
 |-  2 e. RR
4 0le2
 |-  0 <_ 2
5 absid
 |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 )
6 3 4 5 mp2an
 |-  ( abs ` 2 ) = 2
7 6 eqeq1i
 |-  ( ( abs ` 2 ) = 1 <-> 2 = 1 )
8 2 7 mtbir
 |-  -. ( abs ` 2 ) = 1
9 8 intnan
 |-  -. ( 2 e. ZZ /\ ( abs ` 2 ) = 1 )
10 zringunit
 |-  ( 2 e. ( Unit ` ZZring ) <-> ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) )
11 9 10 mtbir
 |-  -. 2 e. ( Unit ` ZZring )
12 zringbas
 |-  ZZ = ( Base ` ZZring )
13 eqid
 |-  ( Unit ` ZZring ) = ( Unit ` ZZring )
14 zring0
 |-  0 = ( 0g ` ZZring )
15 12 13 14 isdrng
 |-  ( ZZring e. DivRing <-> ( ZZring e. Ring /\ ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) )
16 2z
 |-  2 e. ZZ
17 2ne0
 |-  2 =/= 0
18 eldifsn
 |-  ( 2 e. ( ZZ \ { 0 } ) <-> ( 2 e. ZZ /\ 2 =/= 0 ) )
19 16 17 18 mpbir2an
 |-  2 e. ( ZZ \ { 0 } )
20 id
 |-  ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> ( Unit ` ZZring ) = ( ZZ \ { 0 } ) )
21 19 20 eleqtrrid
 |-  ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> 2 e. ( Unit ` ZZring ) )
22 15 21 simplbiim
 |-  ( ZZring e. DivRing -> 2 e. ( Unit ` ZZring ) )
23 11 22 mto
 |-  -. ZZring e. DivRing
24 23 nelir
 |-  ZZring e/ DivRing