| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 2 | 1 | nesymi |  |-  -. 2 = 1 | 
						
							| 3 |  | 2re |  |-  2 e. RR | 
						
							| 4 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 5 |  | absid |  |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( abs ` 2 ) = 2 | 
						
							| 7 | 6 | eqeq1i |  |-  ( ( abs ` 2 ) = 1 <-> 2 = 1 ) | 
						
							| 8 | 2 7 | mtbir |  |-  -. ( abs ` 2 ) = 1 | 
						
							| 9 | 8 | intnan |  |-  -. ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) | 
						
							| 10 |  | zringunit |  |-  ( 2 e. ( Unit ` ZZring ) <-> ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) ) | 
						
							| 11 | 9 10 | mtbir |  |-  -. 2 e. ( Unit ` ZZring ) | 
						
							| 12 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 13 |  | eqid |  |-  ( Unit ` ZZring ) = ( Unit ` ZZring ) | 
						
							| 14 |  | zring0 |  |-  0 = ( 0g ` ZZring ) | 
						
							| 15 | 12 13 14 | isdrng |  |-  ( ZZring e. DivRing <-> ( ZZring e. Ring /\ ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) ) | 
						
							| 16 |  | 2z |  |-  2 e. ZZ | 
						
							| 17 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 18 |  | eldifsn |  |-  ( 2 e. ( ZZ \ { 0 } ) <-> ( 2 e. ZZ /\ 2 =/= 0 ) ) | 
						
							| 19 | 16 17 18 | mpbir2an |  |-  2 e. ( ZZ \ { 0 } ) | 
						
							| 20 |  | id |  |-  ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) | 
						
							| 21 | 19 20 | eleqtrrid |  |-  ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> 2 e. ( Unit ` ZZring ) ) | 
						
							| 22 | 15 21 | simplbiim |  |-  ( ZZring e. DivRing -> 2 e. ( Unit ` ZZring ) ) | 
						
							| 23 | 11 22 | mto |  |-  -. ZZring e. DivRing | 
						
							| 24 | 23 | nelir |  |-  ZZring e/ DivRing |