Description: The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | zringpid | |- ZZring e. PID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringidom | |- ZZring e. IDomn |
|
2 | zringlpir | |- ZZring e. LPIR |
|
3 | 1 2 | elini | |- ZZring e. ( IDomn i^i LPIR ) |
4 | df-pid | |- PID = ( IDomn i^i LPIR ) |
|
5 | 3 4 | eleqtrri | |- ZZring e. PID |