Metamath Proof Explorer


Theorem zringsub

Description: The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025)

Ref Expression
Hypothesis zringsub.p
|- .- = ( -g ` ZZring )
Assertion zringsub
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X .- Y ) = ( X - Y ) )

Proof

Step Hyp Ref Expression
1 zringsub.p
 |-  .- = ( -g ` ZZring )
2 zcn
 |-  ( x e. ZZ -> x e. CC )
3 zaddcl
 |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ )
4 znegcl
 |-  ( x e. ZZ -> -u x e. ZZ )
5 0z
 |-  0 e. ZZ
6 2 3 4 5 cnsubglem
 |-  ZZ e. ( SubGrp ` CCfld )
7 cnfldsub
 |-  - = ( -g ` CCfld )
8 df-zring
 |-  ZZring = ( CCfld |`s ZZ )
9 7 8 1 subgsub
 |-  ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) )
10 6 9 mp3an1
 |-  ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) )
11 10 eqcomd
 |-  ( ( X e. ZZ /\ Y e. ZZ ) -> ( X .- Y ) = ( X - Y ) )