| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zringsub.p |  |-  .- = ( -g ` ZZring ) | 
						
							| 2 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 3 |  | zaddcl |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) | 
						
							| 4 |  | znegcl |  |-  ( x e. ZZ -> -u x e. ZZ ) | 
						
							| 5 |  | 0z |  |-  0 e. ZZ | 
						
							| 6 | 2 3 4 5 | cnsubglem |  |-  ZZ e. ( SubGrp ` CCfld ) | 
						
							| 7 |  | cnfldsub |  |-  - = ( -g ` CCfld ) | 
						
							| 8 |  | df-zring |  |-  ZZring = ( CCfld |`s ZZ ) | 
						
							| 9 | 7 8 1 | subgsub |  |-  ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) | 
						
							| 10 | 6 9 | mp3an1 |  |-  ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ( X e. ZZ /\ Y e. ZZ ) -> ( X .- Y ) = ( X - Y ) ) |