Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zringsubgval.m | |- .- = ( -g ` ZZring ) | |
| Assertion | zringsubgval | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zringsubgval.m | |- .- = ( -g ` ZZring ) | |
| 2 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) | |
| 3 | subrgsubg | |- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) | |
| 4 | 2 3 | ax-mp | |- ZZ e. ( SubGrp ` CCfld ) | 
| 5 | cnfldsub | |- - = ( -g ` CCfld ) | |
| 6 | df-zring | |- ZZring = ( CCfld |`s ZZ ) | |
| 7 | 5 6 1 | subgsub | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) | 
| 8 | 4 7 | mp3an1 | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |