Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zringsubgval.m | |- .- = ( -g ` ZZring ) |
|
Assertion | zringsubgval | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringsubgval.m | |- .- = ( -g ` ZZring ) |
|
2 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
3 | subrgsubg | |- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
|
4 | 2 3 | ax-mp | |- ZZ e. ( SubGrp ` CCfld ) |
5 | cnfldsub | |- - = ( -g ` CCfld ) |
|
6 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
7 | 5 6 1 | subgsub | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |
8 | 4 7 | mp3an1 | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |