Metamath Proof Explorer


Theorem zringsubgval

Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)

Ref Expression
Hypothesis zringsubgval.m
|- .- = ( -g ` ZZring )
Assertion zringsubgval
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) )

Proof

Step Hyp Ref Expression
1 zringsubgval.m
 |-  .- = ( -g ` ZZring )
2 zsubrg
 |-  ZZ e. ( SubRing ` CCfld )
3 subrgsubg
 |-  ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) )
4 2 3 ax-mp
 |-  ZZ e. ( SubGrp ` CCfld )
5 cnfldsub
 |-  - = ( -g ` CCfld )
6 df-zring
 |-  ZZring = ( CCfld |`s ZZ )
7 5 6 1 subgsub
 |-  ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) )
8 4 7 mp3an1
 |-  ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) )