Step |
Hyp |
Ref |
Expression |
1 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
2 |
|
eqid |
|- ( Unit ` ZZring ) = ( Unit ` ZZring ) |
3 |
1 2
|
unitcl |
|- ( A e. ( Unit ` ZZring ) -> A e. ZZ ) |
4 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
5 |
|
zgz |
|- ( x e. ZZ -> x e. Z[i] ) |
6 |
5
|
ssriv |
|- ZZ C_ Z[i] |
7 |
|
gzsubrg |
|- Z[i] e. ( SubRing ` CCfld ) |
8 |
|
eqid |
|- ( CCfld |`s Z[i] ) = ( CCfld |`s Z[i] ) |
9 |
8
|
subsubrg |
|- ( Z[i] e. ( SubRing ` CCfld ) -> ( ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ Z[i] ) ) ) |
10 |
7 9
|
ax-mp |
|- ( ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ Z[i] ) ) |
11 |
4 6 10
|
mpbir2an |
|- ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) |
12 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
13 |
|
ressabs |
|- ( ( Z[i] e. ( SubRing ` CCfld ) /\ ZZ C_ Z[i] ) -> ( ( CCfld |`s Z[i] ) |`s ZZ ) = ( CCfld |`s ZZ ) ) |
14 |
7 6 13
|
mp2an |
|- ( ( CCfld |`s Z[i] ) |`s ZZ ) = ( CCfld |`s ZZ ) |
15 |
12 14
|
eqtr4i |
|- ZZring = ( ( CCfld |`s Z[i] ) |`s ZZ ) |
16 |
|
eqid |
|- ( Unit ` ( CCfld |`s Z[i] ) ) = ( Unit ` ( CCfld |`s Z[i] ) ) |
17 |
15 16 2
|
subrguss |
|- ( ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) -> ( Unit ` ZZring ) C_ ( Unit ` ( CCfld |`s Z[i] ) ) ) |
18 |
11 17
|
ax-mp |
|- ( Unit ` ZZring ) C_ ( Unit ` ( CCfld |`s Z[i] ) ) |
19 |
18
|
sseli |
|- ( A e. ( Unit ` ZZring ) -> A e. ( Unit ` ( CCfld |`s Z[i] ) ) ) |
20 |
8
|
gzrngunit |
|- ( A e. ( Unit ` ( CCfld |`s Z[i] ) ) <-> ( A e. Z[i] /\ ( abs ` A ) = 1 ) ) |
21 |
20
|
simprbi |
|- ( A e. ( Unit ` ( CCfld |`s Z[i] ) ) -> ( abs ` A ) = 1 ) |
22 |
19 21
|
syl |
|- ( A e. ( Unit ` ZZring ) -> ( abs ` A ) = 1 ) |
23 |
3 22
|
jca |
|- ( A e. ( Unit ` ZZring ) -> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |
24 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
25 |
24
|
adantr |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. CC ) |
26 |
|
simpr |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( abs ` A ) = 1 ) |
27 |
|
ax-1ne0 |
|- 1 =/= 0 |
28 |
27
|
a1i |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> 1 =/= 0 ) |
29 |
26 28
|
eqnetrd |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( abs ` A ) =/= 0 ) |
30 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
31 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
32 |
30 31
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
33 |
32
|
necon3i |
|- ( ( abs ` A ) =/= 0 -> A =/= 0 ) |
34 |
29 33
|
syl |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A =/= 0 ) |
35 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
36 |
25 34 35
|
sylanbrc |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. ( CC \ { 0 } ) ) |
37 |
|
simpl |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. ZZ ) |
38 |
|
cnfldinv |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
39 |
25 34 38
|
syl2anc |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
40 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
41 |
40
|
adantr |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. RR ) |
42 |
|
absresq |
|- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
43 |
41 42
|
syl |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
44 |
26
|
oveq1d |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
45 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
46 |
44 45
|
eqtrdi |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = 1 ) |
47 |
25
|
sqvald |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( A ^ 2 ) = ( A x. A ) ) |
48 |
43 46 47
|
3eqtr3rd |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( A x. A ) = 1 ) |
49 |
|
1cnd |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> 1 e. CC ) |
50 |
49 25 25 34
|
divmuld |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( 1 / A ) = A <-> ( A x. A ) = 1 ) ) |
51 |
48 50
|
mpbird |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( 1 / A ) = A ) |
52 |
39 51
|
eqtrd |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = A ) |
53 |
52 37
|
eqeltrd |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) e. ZZ ) |
54 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
55 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
56 |
|
cndrng |
|- CCfld e. DivRing |
57 |
54 55 56
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
58 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
59 |
12 57 2 58
|
subrgunit |
|- ( ZZ e. ( SubRing ` CCfld ) -> ( A e. ( Unit ` ZZring ) <-> ( A e. ( CC \ { 0 } ) /\ A e. ZZ /\ ( ( invr ` CCfld ) ` A ) e. ZZ ) ) ) |
60 |
4 59
|
ax-mp |
|- ( A e. ( Unit ` ZZring ) <-> ( A e. ( CC \ { 0 } ) /\ A e. ZZ /\ ( ( invr ` CCfld ) ` A ) e. ZZ ) ) |
61 |
36 37 53 60
|
syl3anbrc |
|- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. ( Unit ` ZZring ) ) |
62 |
23 61
|
impbii |
|- ( A e. ( Unit ` ZZring ) <-> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |