| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zriotaneg.1 |
|- ( x = -u y -> ( ph <-> ps ) ) |
| 2 |
|
tru |
|- T. |
| 3 |
|
nfriota1 |
|- F/_ y ( iota_ y e. ZZ ps ) |
| 4 |
3
|
nfneg |
|- F/_ y -u ( iota_ y e. ZZ ps ) |
| 5 |
|
znegcl |
|- ( y e. ZZ -> -u y e. ZZ ) |
| 6 |
5
|
adantl |
|- ( ( T. /\ y e. ZZ ) -> -u y e. ZZ ) |
| 7 |
|
simpr |
|- ( ( T. /\ ( iota_ y e. ZZ ps ) e. ZZ ) -> ( iota_ y e. ZZ ps ) e. ZZ ) |
| 8 |
7
|
znegcld |
|- ( ( T. /\ ( iota_ y e. ZZ ps ) e. ZZ ) -> -u ( iota_ y e. ZZ ps ) e. ZZ ) |
| 9 |
|
negeq |
|- ( y = ( iota_ y e. ZZ ps ) -> -u y = -u ( iota_ y e. ZZ ps ) ) |
| 10 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
| 11 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 12 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 13 |
|
negcon2 |
|- ( ( x e. CC /\ y e. CC ) -> ( x = -u y <-> y = -u x ) ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x = -u y <-> y = -u x ) ) |
| 15 |
10 14
|
reuhyp |
|- ( x e. ZZ -> E! y e. ZZ x = -u y ) |
| 16 |
15
|
adantl |
|- ( ( T. /\ x e. ZZ ) -> E! y e. ZZ x = -u y ) |
| 17 |
4 6 8 1 9 16
|
riotaxfrd |
|- ( ( T. /\ E! x e. ZZ ph ) -> ( iota_ x e. ZZ ph ) = -u ( iota_ y e. ZZ ps ) ) |
| 18 |
2 17
|
mpan |
|- ( E! x e. ZZ ph -> ( iota_ x e. ZZ ph ) = -u ( iota_ y e. ZZ ps ) ) |