| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrrnghm.b |
|- B = ( Base ` T ) |
| 2 |
|
zrrnghm.0 |
|- .0. = ( 0g ` S ) |
| 3 |
|
zrrnghm.h |
|- H = ( x e. B |-> .0. ) |
| 4 |
|
eldifi |
|- ( T e. ( Ring \ NzRing ) -> T e. Ring ) |
| 5 |
|
ringrng |
|- ( T e. Ring -> T e. Rng ) |
| 6 |
4 5
|
syl |
|- ( T e. ( Ring \ NzRing ) -> T e. Rng ) |
| 7 |
6
|
anim1i |
|- ( ( T e. ( Ring \ NzRing ) /\ S e. Rng ) -> ( T e. Rng /\ S e. Rng ) ) |
| 8 |
7
|
ancoms |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( T e. Rng /\ S e. Rng ) ) |
| 9 |
|
rngabl |
|- ( S e. Rng -> S e. Abel ) |
| 10 |
|
ablgrp |
|- ( S e. Abel -> S e. Grp ) |
| 11 |
9 10
|
syl |
|- ( S e. Rng -> S e. Grp ) |
| 12 |
11
|
adantr |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> S e. Grp ) |
| 13 |
|
ringgrp |
|- ( T e. Ring -> T e. Grp ) |
| 14 |
4 13
|
syl |
|- ( T e. ( Ring \ NzRing ) -> T e. Grp ) |
| 15 |
14
|
adantl |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> T e. Grp ) |
| 16 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 17 |
1 16
|
0ringbas |
|- ( T e. ( Ring \ NzRing ) -> B = { ( 0g ` T ) } ) |
| 18 |
17
|
adantl |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> B = { ( 0g ` T ) } ) |
| 19 |
1 2 3 16
|
c0snghm |
|- ( ( S e. Grp /\ T e. Grp /\ B = { ( 0g ` T ) } ) -> H e. ( T GrpHom S ) ) |
| 20 |
12 15 18 19
|
syl3anc |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( T GrpHom S ) ) |
| 21 |
3
|
a1i |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> H = ( x e. B |-> .0. ) ) |
| 22 |
|
eqidd |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ x = ( 0g ` T ) ) -> .0. = .0. ) |
| 23 |
1 16
|
ring0cl |
|- ( T e. Ring -> ( 0g ` T ) e. B ) |
| 24 |
4 23
|
syl |
|- ( T e. ( Ring \ NzRing ) -> ( 0g ` T ) e. B ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( 0g ` T ) e. B ) |
| 26 |
2
|
fvexi |
|- .0. e. _V |
| 27 |
26
|
a1i |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> .0. e. _V ) |
| 28 |
21 22 25 27
|
fvmptd |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( H ` ( 0g ` T ) ) = .0. ) |
| 29 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 30 |
29 2
|
grpidcl |
|- ( S e. Grp -> .0. e. ( Base ` S ) ) |
| 31 |
11 30
|
syl |
|- ( S e. Rng -> .0. e. ( Base ` S ) ) |
| 32 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 33 |
29 32 2
|
rnglz |
|- ( ( S e. Rng /\ .0. e. ( Base ` S ) ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 34 |
31 33
|
mpdan |
|- ( S e. Rng -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 35 |
34
|
adantr |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 36 |
35
|
adantr |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 37 |
36
|
adantr |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 38 |
|
simpr |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( 0g ` T ) ) = .0. ) |
| 39 |
38 38
|
oveq12d |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) = ( .0. ( .r ` S ) .0. ) ) |
| 40 |
|
eqid |
|- ( .r ` T ) = ( .r ` T ) |
| 41 |
1 40 16
|
ringlz |
|- ( ( T e. Ring /\ ( 0g ` T ) e. B ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 42 |
4 23 41
|
syl2anc2 |
|- ( T e. ( Ring \ NzRing ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 43 |
42
|
ad2antlr |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 44 |
43
|
adantr |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 45 |
44
|
fveq2d |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( H ` ( 0g ` T ) ) ) |
| 46 |
45 38
|
eqtrd |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = .0. ) |
| 47 |
37 39 46
|
3eqtr4rd |
|- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) |
| 48 |
28 47
|
mpdan |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) |
| 49 |
23 23
|
jca |
|- ( T e. Ring -> ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) ) |
| 50 |
4 49
|
syl |
|- ( T e. ( Ring \ NzRing ) -> ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) ) |
| 51 |
50
|
ad2antlr |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) ) |
| 52 |
|
fvoveq1 |
|- ( a = ( 0g ` T ) -> ( H ` ( a ( .r ` T ) c ) ) = ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) ) |
| 53 |
|
fveq2 |
|- ( a = ( 0g ` T ) -> ( H ` a ) = ( H ` ( 0g ` T ) ) ) |
| 54 |
53
|
oveq1d |
|- ( a = ( 0g ` T ) -> ( ( H ` a ) ( .r ` S ) ( H ` c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) ) |
| 55 |
52 54
|
eqeq12d |
|- ( a = ( 0g ` T ) -> ( ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) ) ) |
| 56 |
|
oveq2 |
|- ( c = ( 0g ` T ) -> ( ( 0g ` T ) ( .r ` T ) c ) = ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) |
| 57 |
56
|
fveq2d |
|- ( c = ( 0g ` T ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) = ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) ) |
| 58 |
|
fveq2 |
|- ( c = ( 0g ` T ) -> ( H ` c ) = ( H ` ( 0g ` T ) ) ) |
| 59 |
58
|
oveq2d |
|- ( c = ( 0g ` T ) -> ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) |
| 60 |
57 59
|
eqeq12d |
|- ( c = ( 0g ` T ) -> ( ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) ) |
| 61 |
55 60
|
2ralsng |
|- ( ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) -> ( A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) ) |
| 62 |
51 61
|
syl |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) ) |
| 63 |
48 62
|
mpbird |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) |
| 64 |
|
raleq |
|- ( B = { ( 0g ` T ) } -> ( A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 65 |
64
|
raleqbi1dv |
|- ( B = { ( 0g ` T ) } -> ( A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 66 |
65
|
adantl |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 67 |
63 66
|
mpbird |
|- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) |
| 68 |
18 67
|
mpdan |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) |
| 69 |
20 68
|
jca |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( T GrpHom S ) /\ A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 70 |
1 40 32
|
isrnghm |
|- ( H e. ( T RngHom S ) <-> ( ( T e. Rng /\ S e. Rng ) /\ ( H e. ( T GrpHom S ) /\ A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) ) |
| 71 |
8 69 70
|
sylanbrc |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( T RngHom S ) ) |