| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( ( A ^c ( 1 / N ) ) e. NN -> ( A ^c ( 1 / N ) ) e. ZZ ) |
| 2 |
1
|
3ad2ant3 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) e. ZZ ) |
| 3 |
|
simp2 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> N e. NN ) |
| 4 |
|
iddvdsexp |
|- ( ( ( A ^c ( 1 / N ) ) e. ZZ /\ N e. NN ) -> ( A ^c ( 1 / N ) ) || ( ( A ^c ( 1 / N ) ) ^ N ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) || ( ( A ^c ( 1 / N ) ) ^ N ) ) |
| 6 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> A e. CC ) |
| 8 |
|
cxproot |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |
| 9 |
7 3 8
|
syl2anc |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |
| 10 |
5 9
|
breqtrd |
|- ( ( A e. ZZ /\ N e. NN /\ ( A ^c ( 1 / N ) ) e. NN ) -> ( A ^c ( 1 / N ) ) || A ) |