| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zrinitorngc.u | 
							 |-  ( ph -> U e. V )  | 
						
						
							| 2 | 
							
								
							 | 
							zrinitorngc.c | 
							 |-  C = ( RngCat ` U )  | 
						
						
							| 3 | 
							
								
							 | 
							zrinitorngc.z | 
							 |-  ( ph -> Z e. ( Ring \ NzRing ) )  | 
						
						
							| 4 | 
							
								
							 | 
							zrinitorngc.e | 
							 |-  ( ph -> Z e. U )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 6 | 
							
								2 5 1
							 | 
							rngcbas | 
							 |-  ( ph -> ( Base ` C ) = ( U i^i Rng ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq2d | 
							 |-  ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Rng ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elin | 
							 |-  ( r e. ( U i^i Rng ) <-> ( r e. U /\ r e. Rng ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprbi | 
							 |-  ( r e. ( U i^i Rng ) -> r e. Rng )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							biimtrdi | 
							 |-  ( ph -> ( r e. ( Base ` C ) -> r e. Rng ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imp | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. Rng )  | 
						
						
							| 12 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` r ) = ( Base ` r )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` Z ) = ( 0g ` Z )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							c0rnghm | 
							 |-  ( ( r e. Rng /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) )  | 
						
						
							| 17 | 
							
								11 12 16
							 | 
							syl2anc | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> U e. V )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eldifi | 
							 |-  ( Z e. ( Ring \ NzRing ) -> Z e. Ring )  | 
						
						
							| 23 | 
							
								
							 | 
							ringrng | 
							 |-  ( Z e. Ring -> Z e. Rng )  | 
						
						
							| 24 | 
							
								3 22 23
							 | 
							3syl | 
							 |-  ( ph -> Z e. Rng )  | 
						
						
							| 25 | 
							
								4 24
							 | 
							elind | 
							 |-  ( ph -> Z e. ( U i^i Rng ) )  | 
						
						
							| 26 | 
							
								25 6
							 | 
							eleqtrrd | 
							 |-  ( ph -> Z e. ( Base ` C ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) )  | 
						
						
							| 28 | 
							
								2 5 19 20 21 27
							 | 
							rngchom | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( r ( Hom ` C ) Z ) = ( r RngHom Z ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( r RngHom Z ) = ( r ( Hom ` C ) Z ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eleq2d | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							biimpa | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) )  | 
						
						
							| 32 | 
							
								28
							 | 
							eleq2d | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> h e. ( r RngHom Z ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` Z ) = ( Base ` Z )  | 
						
						
							| 34 | 
							
								13 33
							 | 
							rnghmf | 
							 |-  ( h e. ( r RngHom Z ) -> h : ( Base ` r ) --> ( Base ` Z ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							biimtrdi | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							ffn | 
							 |-  ( h : ( Base ` r ) --> ( Base ` Z ) -> h Fn ( Base ` r ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h Fn ( Base ` r ) )  | 
						
						
							| 39 | 
							
								
							 | 
							fvex | 
							 |-  ( 0g ` Z ) e. _V  | 
						
						
							| 40 | 
							
								39 15
							 | 
							fnmpti | 
							 |-  ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r )  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) )  | 
						
						
							| 42 | 
							
								33 14
							 | 
							0ringbas | 
							 |-  ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
						
							| 43 | 
							
								3 42
							 | 
							syl | 
							 |-  ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
						
							| 45 | 
							
								44
							 | 
							feq3d | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) <-> h : ( Base ` r ) --> { ( 0g ` Z ) } ) ) | 
						
						
							| 46 | 
							
								
							 | 
							fvconst | 
							 |-  ( ( h : ( Base ` r ) --> { ( 0g ` Z ) } /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) | 
						
						
							| 47 | 
							
								46
							 | 
							ex | 
							 |-  ( h : ( Base ` r ) --> { ( 0g ` Z ) } -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) | 
						
						
							| 48 | 
							
								45 47
							 | 
							biimtrdi | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantr | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imp31 | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) )  | 
						
						
							| 51 | 
							
								
							 | 
							eqidd | 
							 |-  ( a e. ( Base ` r ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( a e. ( Base ` r ) /\ x = a ) -> ( 0g ` Z ) = ( 0g ` Z ) )  | 
						
						
							| 53 | 
							
								
							 | 
							id | 
							 |-  ( a e. ( Base ` r ) -> a e. ( Base ` r ) )  | 
						
						
							| 54 | 
							
								39
							 | 
							a1i | 
							 |-  ( a e. ( Base ` r ) -> ( 0g ` Z ) e. _V )  | 
						
						
							| 55 | 
							
								51 52 53 54
							 | 
							fvmptd | 
							 |-  ( a e. ( Base ` r ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantl | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) )  | 
						
						
							| 57 | 
							
								50 56
							 | 
							eqtr4d | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) )  | 
						
						
							| 58 | 
							
								38 41 57
							 | 
							eqfnfvd | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ex | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) )  | 
						
						
							| 60 | 
							
								36 59
							 | 
							syld | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							alrimiv | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) )  | 
						
						
							| 62 | 
							
								18 31 61
							 | 
							3jca | 
							 |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) )  | 
						
						
							| 63 | 
							
								17 62
							 | 
							mpdan | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							eleq1 | 
							 |-  ( h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							eqeu | 
							 |-  ( ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) -> E! h h e. ( r ( Hom ` C ) Z ) )  | 
						
						
							| 66 | 
							
								63 65
							 | 
							syl | 
							 |-  ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( r ( Hom ` C ) Z ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							ralrimiva | 
							 |-  ( ph -> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) )  | 
						
						
							| 68 | 
							
								2
							 | 
							rngccat | 
							 |-  ( U e. V -> C e. Cat )  | 
						
						
							| 69 | 
							
								1 68
							 | 
							syl | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 70 | 
							
								5 20 69 26
							 | 
							istermo | 
							 |-  ( ph -> ( Z e. ( TermO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) )  | 
						
						
							| 71 | 
							
								67 70
							 | 
							mpbird | 
							 |-  ( ph -> Z e. ( TermO ` C ) )  |