Metamath Proof Explorer


Theorem zsqcl2

Description: The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion zsqcl2
|- ( A e. ZZ -> ( A ^ 2 ) e. NN0 )

Proof

Step Hyp Ref Expression
1 zsqcl
 |-  ( A e. ZZ -> ( A ^ 2 ) e. ZZ )
2 zre
 |-  ( A e. ZZ -> A e. RR )
3 sqge0
 |-  ( A e. RR -> 0 <_ ( A ^ 2 ) )
4 2 3 syl
 |-  ( A e. ZZ -> 0 <_ ( A ^ 2 ) )
5 elnn0z
 |-  ( ( A ^ 2 ) e. NN0 <-> ( ( A ^ 2 ) e. ZZ /\ 0 <_ ( A ^ 2 ) ) )
6 1 4 5 sylanbrc
 |-  ( A e. ZZ -> ( A ^ 2 ) e. NN0 )