Step |
Hyp |
Ref |
Expression |
1 |
|
qdencl |
|- ( ( sqrt ` A ) e. QQ -> ( denom ` ( sqrt ` A ) ) e. NN ) |
2 |
1
|
adantl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. NN ) |
3 |
2
|
nnred |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. RR ) |
4 |
|
1red |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 1 e. RR ) |
5 |
2
|
nnnn0d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. NN0 ) |
6 |
5
|
nn0ge0d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 0 <_ ( denom ` ( sqrt ` A ) ) ) |
7 |
|
0le1 |
|- 0 <_ 1 |
8 |
7
|
a1i |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 0 <_ 1 ) |
9 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
10 |
9
|
a1i |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( 1 ^ 2 ) = 1 ) |
11 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
12 |
11
|
sqsqrtd |
|- ( A e. ZZ -> ( ( sqrt ` A ) ^ 2 ) = A ) |
13 |
12
|
adantr |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
14 |
13
|
fveq2d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( denom ` A ) ) |
15 |
|
simpl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> A e. ZZ ) |
16 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
17 |
16
|
adantr |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> A e. QQ ) |
18 |
|
qden1elz |
|- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
19 |
17 18
|
syl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
20 |
15 19
|
mpbird |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` A ) = 1 ) |
21 |
14 20
|
eqtrd |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = 1 ) |
22 |
|
densq |
|- ( ( sqrt ` A ) e. QQ -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( ( denom ` ( sqrt ` A ) ) ^ 2 ) ) |
23 |
22
|
adantl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( ( denom ` ( sqrt ` A ) ) ^ 2 ) ) |
24 |
10 21 23
|
3eqtr2rd |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` ( sqrt ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
25 |
3 4 6 8 24
|
sq11d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) = 1 ) |
26 |
|
qden1elz |
|- ( ( sqrt ` A ) e. QQ -> ( ( denom ` ( sqrt ` A ) ) = 1 <-> ( sqrt ` A ) e. ZZ ) ) |
27 |
26
|
adantl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` ( sqrt ` A ) ) = 1 <-> ( sqrt ` A ) e. ZZ ) ) |
28 |
25 27
|
mpbid |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( sqrt ` A ) e. ZZ ) |