| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. ZZ ) | 
						
							| 2 |  | ax-1cn |  |-  1 e. CC | 
						
							| 3 |  | cnfldmulg |  |-  ( ( x e. ZZ /\ 1 e. CC ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) | 
						
							| 5 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 6 | 5 | adantl |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. CC ) | 
						
							| 7 | 6 | mulridd |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x x. 1 ) = x ) | 
						
							| 8 | 4 7 | eqtrd |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = x ) | 
						
							| 9 |  | subrgsubg |  |-  ( R e. ( SubRing ` CCfld ) -> R e. ( SubGrp ` CCfld ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> R e. ( SubGrp ` CCfld ) ) | 
						
							| 11 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 12 | 11 | subrg1cl |  |-  ( R e. ( SubRing ` CCfld ) -> 1 e. R ) | 
						
							| 13 | 12 | adantr |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> 1 e. R ) | 
						
							| 14 |  | eqid |  |-  ( .g ` CCfld ) = ( .g ` CCfld ) | 
						
							| 15 | 14 | subgmulgcl |  |-  ( ( R e. ( SubGrp ` CCfld ) /\ x e. ZZ /\ 1 e. R ) -> ( x ( .g ` CCfld ) 1 ) e. R ) | 
						
							| 16 | 10 1 13 15 | syl3anc |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) e. R ) | 
						
							| 17 | 8 16 | eqeltrrd |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. R ) | 
						
							| 18 | 17 | ex |  |-  ( R e. ( SubRing ` CCfld ) -> ( x e. ZZ -> x e. R ) ) | 
						
							| 19 | 18 | ssrdv |  |-  ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |