Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. ZZ ) |
2 |
|
ax-1cn |
|- 1 e. CC |
3 |
|
cnfldmulg |
|- ( ( x e. ZZ /\ 1 e. CC ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) |
4 |
1 2 3
|
sylancl |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) |
5 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
6 |
5
|
adantl |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. CC ) |
7 |
6
|
mulid1d |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x x. 1 ) = x ) |
8 |
4 7
|
eqtrd |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = x ) |
9 |
|
subrgsubg |
|- ( R e. ( SubRing ` CCfld ) -> R e. ( SubGrp ` CCfld ) ) |
10 |
9
|
adantr |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> R e. ( SubGrp ` CCfld ) ) |
11 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
12 |
11
|
subrg1cl |
|- ( R e. ( SubRing ` CCfld ) -> 1 e. R ) |
13 |
12
|
adantr |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> 1 e. R ) |
14 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
15 |
14
|
subgmulgcl |
|- ( ( R e. ( SubGrp ` CCfld ) /\ x e. ZZ /\ 1 e. R ) -> ( x ( .g ` CCfld ) 1 ) e. R ) |
16 |
10 1 13 15
|
syl3anc |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) e. R ) |
17 |
8 16
|
eqeltrrd |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. R ) |
18 |
17
|
ex |
|- ( R e. ( SubRing ` CCfld ) -> ( x e. ZZ -> x e. R ) ) |
19 |
18
|
ssrdv |
|- ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |