| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsum.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
zsum.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
zsum.3 |
|- ( ph -> A C_ Z ) |
| 4 |
|
zsum.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 5 |
|
zsum.5 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 6 |
|
eleq1w |
|- ( n = i -> ( n e. A <-> i e. A ) ) |
| 7 |
|
csbeq1 |
|- ( n = i -> [_ n / k ]_ B = [_ i / k ]_ B ) |
| 8 |
6 7
|
ifbieq1d |
|- ( n = i -> if ( n e. A , [_ n / k ]_ B , 0 ) = if ( i e. A , [_ i / k ]_ B , 0 ) ) |
| 9 |
8
|
cbvmptv |
|- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( i e. ZZ |-> if ( i e. A , [_ i / k ]_ B , 0 ) ) |
| 10 |
|
simpll |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ph ) |
| 11 |
5
|
ralrimiva |
|- ( ph -> A. k e. A B e. CC ) |
| 12 |
|
nfcsb1v |
|- F/_ k [_ i / k ]_ B |
| 13 |
12
|
nfel1 |
|- F/ k [_ i / k ]_ B e. CC |
| 14 |
|
csbeq1a |
|- ( k = i -> B = [_ i / k ]_ B ) |
| 15 |
14
|
eleq1d |
|- ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) ) |
| 16 |
13 15
|
rspc |
|- ( i e. A -> ( A. k e. A B e. CC -> [_ i / k ]_ B e. CC ) ) |
| 17 |
11 16
|
syl5 |
|- ( i e. A -> ( ph -> [_ i / k ]_ B e. CC ) ) |
| 18 |
10 17
|
mpan9 |
|- ( ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
| 19 |
|
simplr |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> m e. ZZ ) |
| 20 |
2
|
ad2antrr |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> M e. ZZ ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> A C_ ( ZZ>= ` m ) ) |
| 22 |
3 1
|
sseqtrdi |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> A C_ ( ZZ>= ` M ) ) |
| 24 |
9 18 19 20 21 23
|
sumrb |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 25 |
24
|
biimpd |
|- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 26 |
25
|
expimpd |
|- ( ( ph /\ m e. ZZ ) -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 27 |
26
|
rexlimdva |
|- ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 28 |
3
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A C_ Z ) |
| 29 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 30 |
1 29
|
eqsstri |
|- Z C_ ZZ |
| 31 |
|
zssre |
|- ZZ C_ RR |
| 32 |
30 31
|
sstri |
|- Z C_ RR |
| 33 |
|
ltso |
|- < Or RR |
| 34 |
|
soss |
|- ( Z C_ RR -> ( < Or RR -> < Or Z ) ) |
| 35 |
32 33 34
|
mp2 |
|- < Or Z |
| 36 |
|
soss |
|- ( A C_ Z -> ( < Or Z -> < Or A ) ) |
| 37 |
28 35 36
|
mpisyl |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> < Or A ) |
| 38 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
| 39 |
|
ovex |
|- ( 1 ... m ) e. _V |
| 40 |
39
|
f1oen |
|- ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A ) |
| 41 |
40
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( 1 ... m ) ~~ A ) |
| 42 |
41
|
ensymd |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A ~~ ( 1 ... m ) ) |
| 43 |
|
enfii |
|- ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin ) |
| 44 |
38 42 43
|
sylancr |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A e. Fin ) |
| 45 |
|
fz1iso |
|- ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 46 |
37 44 45
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 47 |
|
simpll |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> ph ) |
| 48 |
47 17
|
mpan9 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
| 49 |
|
fveq2 |
|- ( n = j -> ( f ` n ) = ( f ` j ) ) |
| 50 |
49
|
csbeq1d |
|- ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / k ]_ B ) |
| 51 |
|
csbcow |
|- [_ ( f ` j ) / i ]_ [_ i / k ]_ B = [_ ( f ` j ) / k ]_ B |
| 52 |
50 51
|
eqtr4di |
|- ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / i ]_ [_ i / k ]_ B ) |
| 53 |
52
|
cbvmptv |
|- ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( f ` j ) / i ]_ [_ i / k ]_ B ) |
| 54 |
|
eqid |
|- ( j e. NN |-> [_ ( g ` j ) / i ]_ [_ i / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / i ]_ [_ i / k ]_ B ) |
| 55 |
|
simplr |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN ) |
| 56 |
2
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> M e. ZZ ) |
| 57 |
22
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` M ) ) |
| 58 |
|
simprl |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
| 59 |
|
simprr |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 60 |
9 48 53 54 55 56 57 58 59
|
summolem2a |
|- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 61 |
60
|
expr |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 62 |
61
|
exlimdv |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 63 |
46 62
|
mpd |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 64 |
|
breq2 |
|- ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 65 |
63 64
|
syl5ibrcom |
|- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 66 |
65
|
expimpd |
|- ( ( ph /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 67 |
66
|
exlimdv |
|- ( ( ph /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 68 |
67
|
rexlimdva |
|- ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 69 |
27 68
|
jaod |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 70 |
2
|
adantr |
|- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> M e. ZZ ) |
| 71 |
22
|
adantr |
|- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> A C_ ( ZZ>= ` M ) ) |
| 72 |
|
simpr |
|- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
| 73 |
|
fveq2 |
|- ( m = M -> ( ZZ>= ` m ) = ( ZZ>= ` M ) ) |
| 74 |
73
|
sseq2d |
|- ( m = M -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` M ) ) ) |
| 75 |
|
seqeq1 |
|- ( m = M -> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ) |
| 76 |
75
|
breq1d |
|- ( m = M -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 77 |
74 76
|
anbi12d |
|- ( m = M -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` M ) /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) ) |
| 78 |
77
|
rspcev |
|- ( ( M e. ZZ /\ ( A C_ ( ZZ>= ` M ) /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 79 |
70 71 72 78
|
syl12anc |
|- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 80 |
79
|
orcd |
|- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 81 |
80
|
ex |
|- ( ph -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) ) |
| 82 |
69 81
|
impbid |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 83 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ( ZZ>= ` M ) ) |
| 84 |
29 83
|
sselid |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ZZ ) |
| 85 |
83 1
|
eleqtrrdi |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. Z ) |
| 86 |
4
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 88 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ if ( k e. A , B , 0 ) |
| 89 |
88
|
nfeq2 |
|- F/ k ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) |
| 90 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 91 |
|
csbeq1a |
|- ( k = j -> if ( k e. A , B , 0 ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 92 |
90 91
|
eqeq12d |
|- ( k = j -> ( ( F ` k ) = if ( k e. A , B , 0 ) <-> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) ) |
| 93 |
89 92
|
rspc |
|- ( j e. Z -> ( A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) -> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) ) |
| 94 |
85 87 93
|
sylc |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 95 |
|
fvex |
|- ( F ` j ) e. _V |
| 96 |
94 95
|
eqeltrrdi |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> [_ j / k ]_ if ( k e. A , B , 0 ) e. _V ) |
| 97 |
|
nfcv |
|- F/_ n if ( k e. A , B , 0 ) |
| 98 |
|
nfv |
|- F/ k n e. A |
| 99 |
|
nfcsb1v |
|- F/_ k [_ n / k ]_ B |
| 100 |
|
nfcv |
|- F/_ k 0 |
| 101 |
98 99 100
|
nfif |
|- F/_ k if ( n e. A , [_ n / k ]_ B , 0 ) |
| 102 |
|
eleq1w |
|- ( k = n -> ( k e. A <-> n e. A ) ) |
| 103 |
|
csbeq1a |
|- ( k = n -> B = [_ n / k ]_ B ) |
| 104 |
102 103
|
ifbieq1d |
|- ( k = n -> if ( k e. A , B , 0 ) = if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 105 |
97 101 104
|
cbvmpt |
|- ( k e. ZZ |-> if ( k e. A , B , 0 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 106 |
105
|
eqcomi |
|- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
| 107 |
106
|
fvmpts |
|- ( ( j e. ZZ /\ [_ j / k ]_ if ( k e. A , B , 0 ) e. _V ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 108 |
84 96 107
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 109 |
108 94
|
eqtr4d |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = ( F ` j ) ) |
| 110 |
2 109
|
seqfeq |
|- ( ph -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq M ( + , F ) ) |
| 111 |
110
|
breq1d |
|- ( ph -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , F ) ~~> x ) ) |
| 112 |
82 111
|
bitrd |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> seq M ( + , F ) ~~> x ) ) |
| 113 |
112
|
iotabidv |
|- ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x seq M ( + , F ) ~~> x ) ) |
| 114 |
|
df-sum |
|- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 115 |
|
df-fv |
|- ( ~~> ` seq M ( + , F ) ) = ( iota x seq M ( + , F ) ~~> x ) |
| 116 |
113 114 115
|
3eqtr4g |
|- ( ph -> sum_ k e. A B = ( ~~> ` seq M ( + , F ) ) ) |