| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn |  |-  ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) | 
						
							| 2 |  | animorrl |  |-  ( ( N e. RR /\ N e. NN ) -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) | 
						
							| 3 |  | olc |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) | 
						
							| 4 | 2 3 | jaodan |  |-  ( ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) | 
						
							| 5 | 1 4 | sylbi |  |-  ( N e. ZZ -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) | 
						
							| 6 |  | nnlesq |  |-  ( N e. NN -> N <_ ( N ^ 2 ) ) | 
						
							| 7 |  | simpl |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> N e. RR ) | 
						
							| 8 |  | 0red |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> 0 e. RR ) | 
						
							| 9 | 7 | resqcld |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> ( N ^ 2 ) e. RR ) | 
						
							| 10 |  | nn0ge0 |  |-  ( -u N e. NN0 -> 0 <_ -u N ) | 
						
							| 11 |  | le0neg1 |  |-  ( N e. RR -> ( N <_ 0 <-> 0 <_ -u N ) ) | 
						
							| 12 | 11 | biimpar |  |-  ( ( N e. RR /\ 0 <_ -u N ) -> N <_ 0 ) | 
						
							| 13 | 10 12 | sylan2 |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> N <_ 0 ) | 
						
							| 14 | 7 | sqge0d |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> 0 <_ ( N ^ 2 ) ) | 
						
							| 15 | 7 8 9 13 14 | letrd |  |-  ( ( N e. RR /\ -u N e. NN0 ) -> N <_ ( N ^ 2 ) ) | 
						
							| 16 | 6 15 | jaoi |  |-  ( ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) -> N <_ ( N ^ 2 ) ) | 
						
							| 17 | 5 16 | syl |  |-  ( N e. ZZ -> N <_ ( N ^ 2 ) ) |