Step |
Hyp |
Ref |
Expression |
1 |
|
zzngim.y |
|- Y = ( Z/nZ ` 0 ) |
2 |
|
zzngim.2 |
|- L = ( ZRHom ` Y ) |
3 |
|
0nn0 |
|- 0 e. NN0 |
4 |
1
|
zncrng |
|- ( 0 e. NN0 -> Y e. CRing ) |
5 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
6 |
3 4 5
|
mp2b |
|- Y e. Ring |
7 |
2
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
8 |
|
rhmghm |
|- ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) ) |
9 |
6 7 8
|
mp2b |
|- L e. ( ZZring GrpHom Y ) |
10 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
11 |
1 10 2
|
znzrhfo |
|- ( 0 e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
12 |
3 11
|
ax-mp |
|- L : ZZ -onto-> ( Base ` Y ) |
13 |
|
fofn |
|- ( L : ZZ -onto-> ( Base ` Y ) -> L Fn ZZ ) |
14 |
|
fnresdm |
|- ( L Fn ZZ -> ( L |` ZZ ) = L ) |
15 |
12 13 14
|
mp2b |
|- ( L |` ZZ ) = L |
16 |
2
|
reseq1i |
|- ( L |` ZZ ) = ( ( ZRHom ` Y ) |` ZZ ) |
17 |
15 16
|
eqtr3i |
|- L = ( ( ZRHom ` Y ) |` ZZ ) |
18 |
|
eqid |
|- 0 = 0 |
19 |
18
|
iftruei |
|- if ( 0 = 0 , ZZ , ( 0 ..^ 0 ) ) = ZZ |
20 |
19
|
eqcomi |
|- ZZ = if ( 0 = 0 , ZZ , ( 0 ..^ 0 ) ) |
21 |
1 10 17 20
|
znf1o |
|- ( 0 e. NN0 -> L : ZZ -1-1-onto-> ( Base ` Y ) ) |
22 |
3 21
|
ax-mp |
|- L : ZZ -1-1-onto-> ( Base ` Y ) |
23 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
24 |
23 10
|
isgim |
|- ( L e. ( ZZring GrpIso Y ) <-> ( L e. ( ZZring GrpHom Y ) /\ L : ZZ -1-1-onto-> ( Base ` Y ) ) ) |
25 |
9 22 24
|
mpbir2an |
|- L e. ( ZZring GrpIso Y ) |