Metamath Proof Explorer


Theorem zzngim

Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses zzngim.y
|- Y = ( Z/nZ ` 0 )
zzngim.2
|- L = ( ZRHom ` Y )
Assertion zzngim
|- L e. ( ZZring GrpIso Y )

Proof

Step Hyp Ref Expression
1 zzngim.y
 |-  Y = ( Z/nZ ` 0 )
2 zzngim.2
 |-  L = ( ZRHom ` Y )
3 0nn0
 |-  0 e. NN0
4 1 zncrng
 |-  ( 0 e. NN0 -> Y e. CRing )
5 crngring
 |-  ( Y e. CRing -> Y e. Ring )
6 3 4 5 mp2b
 |-  Y e. Ring
7 2 zrhrhm
 |-  ( Y e. Ring -> L e. ( ZZring RingHom Y ) )
8 rhmghm
 |-  ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) )
9 6 7 8 mp2b
 |-  L e. ( ZZring GrpHom Y )
10 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
11 1 10 2 znzrhfo
 |-  ( 0 e. NN0 -> L : ZZ -onto-> ( Base ` Y ) )
12 3 11 ax-mp
 |-  L : ZZ -onto-> ( Base ` Y )
13 fofn
 |-  ( L : ZZ -onto-> ( Base ` Y ) -> L Fn ZZ )
14 fnresdm
 |-  ( L Fn ZZ -> ( L |` ZZ ) = L )
15 12 13 14 mp2b
 |-  ( L |` ZZ ) = L
16 2 reseq1i
 |-  ( L |` ZZ ) = ( ( ZRHom ` Y ) |` ZZ )
17 15 16 eqtr3i
 |-  L = ( ( ZRHom ` Y ) |` ZZ )
18 eqid
 |-  0 = 0
19 18 iftruei
 |-  if ( 0 = 0 , ZZ , ( 0 ..^ 0 ) ) = ZZ
20 19 eqcomi
 |-  ZZ = if ( 0 = 0 , ZZ , ( 0 ..^ 0 ) )
21 1 10 17 20 znf1o
 |-  ( 0 e. NN0 -> L : ZZ -1-1-onto-> ( Base ` Y ) )
22 3 21 ax-mp
 |-  L : ZZ -1-1-onto-> ( Base ` Y )
23 zringbas
 |-  ZZ = ( Base ` ZZring )
24 23 10 isgim
 |-  ( L e. ( ZZring GrpIso Y ) <-> ( L e. ( ZZring GrpHom Y ) /\ L : ZZ -1-1-onto-> ( Base ` Y ) ) )
25 9 22 24 mpbir2an
 |-  L e. ( ZZring GrpIso Y )