Step |
Hyp |
Ref |
Expression |
1 |
|
9cn |
|
2 |
|
10re |
|
3 |
2
|
recni |
|
4 |
|
nnnn0 |
|
5 |
|
expcl |
|
6 |
3 4 5
|
sylancr |
|
7 |
3
|
a1i |
|
8 |
|
10pos |
|
9 |
2 8
|
gt0ne0ii |
|
10 |
9
|
a1i |
|
11 |
|
nnz |
|
12 |
7 10 11
|
expne0d |
|
13 |
|
divrec |
|
14 |
1 6 12 13
|
mp3an2i |
|
15 |
7 10 11
|
exprecd |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eqtr4d |
|
18 |
17
|
sumeq2i |
|
19 |
2 9
|
rereccli |
|
20 |
19
|
recni |
|
21 |
|
0re |
|
22 |
2 8
|
recgt0ii |
|
23 |
21 19 22
|
ltleii |
|
24 |
19
|
absidi |
|
25 |
23 24
|
ax-mp |
|
26 |
|
1lt10 |
|
27 |
|
recgt1 |
|
28 |
2 8 27
|
mp2an |
|
29 |
26 28
|
mpbi |
|
30 |
25 29
|
eqbrtri |
|
31 |
|
geoisum1c |
|
32 |
1 20 30 31
|
mp3an |
|
33 |
1 3 9
|
divreci |
|
34 |
1 3 9
|
divcan2i |
|
35 |
|
ax-1cn |
|
36 |
3 35 20
|
subdii |
|
37 |
3
|
mulid1i |
|
38 |
3 9
|
recidi |
|
39 |
37 38
|
oveq12i |
|
40 |
|
10m1e9 |
|
41 |
36 39 40
|
3eqtrri |
|
42 |
34 41
|
eqtri |
|
43 |
|
9re |
|
44 |
43 2 9
|
redivcli |
|
45 |
44
|
recni |
|
46 |
35 20
|
subcli |
|
47 |
45 46 3 9
|
mulcani |
|
48 |
42 47
|
mpbi |
|
49 |
33 48
|
oveq12i |
|
50 |
|
9pos |
|
51 |
43 2 50 8
|
divgt0ii |
|
52 |
44 51
|
gt0ne0ii |
|
53 |
45 52
|
dividi |
|
54 |
32 49 53
|
3eqtr2i |
|
55 |
18 54
|
eqtri |
|