Metamath Proof Explorer


Theorem 0.999...

Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 1 0 ^ 1 + 9 / 1 0 ^ 2 + 9 / 1 0 ^ 3 + ... , is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 0.999... k 9 10 k = 1

Proof

Step Hyp Ref Expression
1 9cn 9
2 10re 10
3 2 recni 10
4 nnnn0 k k 0
5 expcl 10 k 0 10 k
6 3 4 5 sylancr k 10 k
7 3 a1i k 10
8 10pos 0 < 10
9 2 8 gt0ne0ii 10 0
10 9 a1i k 10 0
11 nnz k k
12 7 10 11 expne0d k 10 k 0
13 divrec 9 10 k 10 k 0 9 10 k = 9 1 10 k
14 1 6 12 13 mp3an2i k 9 10 k = 9 1 10 k
15 7 10 11 exprecd k 1 10 k = 1 10 k
16 15 oveq2d k 9 1 10 k = 9 1 10 k
17 14 16 eqtr4d k 9 10 k = 9 1 10 k
18 17 sumeq2i k 9 10 k = k 9 1 10 k
19 2 9 rereccli 1 10
20 19 recni 1 10
21 0re 0
22 2 8 recgt0ii 0 < 1 10
23 21 19 22 ltleii 0 1 10
24 19 absidi 0 1 10 1 10 = 1 10
25 23 24 ax-mp 1 10 = 1 10
26 1lt10 1 < 10
27 recgt1 10 0 < 10 1 < 10 1 10 < 1
28 2 8 27 mp2an 1 < 10 1 10 < 1
29 26 28 mpbi 1 10 < 1
30 25 29 eqbrtri 1 10 < 1
31 geoisum1c 9 1 10 1 10 < 1 k 9 1 10 k = 9 1 10 1 1 10
32 1 20 30 31 mp3an k 9 1 10 k = 9 1 10 1 1 10
33 1 3 9 divreci 9 10 = 9 1 10
34 1 3 9 divcan2i 10 9 10 = 9
35 ax-1cn 1
36 3 35 20 subdii 10 1 1 10 = 10 1 10 1 10
37 3 mulid1i 10 1 = 10
38 3 9 recidi 10 1 10 = 1
39 37 38 oveq12i 10 1 10 1 10 = 10 1
40 10m1e9 10 1 = 9
41 36 39 40 3eqtrri 9 = 10 1 1 10
42 34 41 eqtri 10 9 10 = 10 1 1 10
43 9re 9
44 43 2 9 redivcli 9 10
45 44 recni 9 10
46 35 20 subcli 1 1 10
47 45 46 3 9 mulcani 10 9 10 = 10 1 1 10 9 10 = 1 1 10
48 42 47 mpbi 9 10 = 1 1 10
49 33 48 oveq12i 9 10 9 10 = 9 1 10 1 1 10
50 9pos 0 < 9
51 43 2 50 8 divgt0ii 0 < 9 10
52 44 51 gt0ne0ii 9 10 0
53 45 52 dividi 9 10 9 10 = 1
54 32 49 53 3eqtr2i k 9 1 10 k = 1
55 18 54 eqtri k 9 10 k = 1