Metamath Proof Explorer


Theorem 00lsp

Description: fvco4i lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion 00lsp = LSpan

Proof

Step Hyp Ref Expression
1 0ex V
2 base0 = Base
3 00lss = LSubSp
4 eqid LSpan = LSpan
5 2 3 4 lspfval V LSpan = a 𝒫 b | a b
6 1 5 ax-mp LSpan = a 𝒫 b | a b
7 eqid a 𝒫 b | a b = a 𝒫 b | a b
8 7 dmmpt dom a 𝒫 b | a b = a 𝒫 | b | a b V
9 rab0 b | a b =
10 9 inteqi b | a b =
11 int0 = V
12 10 11 eqtri b | a b = V
13 vprc ¬ V V
14 12 13 eqneltri ¬ b | a b V
15 14 rgenw a 𝒫 ¬ b | a b V
16 rabeq0 a 𝒫 | b | a b V = a 𝒫 ¬ b | a b V
17 15 16 mpbir a 𝒫 | b | a b V =
18 8 17 eqtri dom a 𝒫 b | a b =
19 mptrel Rel a 𝒫 b | a b
20 reldm0 Rel a 𝒫 b | a b a 𝒫 b | a b = dom a 𝒫 b | a b =
21 19 20 ax-mp a 𝒫 b | a b = dom a 𝒫 b | a b =
22 18 21 mpbir a 𝒫 b | a b =
23 6 22 eqtr2i = LSpan