Metamath Proof Explorer


Theorem 00ply1bas

Description: Lemma for ply1basfvi and deg1fvi . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion 00ply1bas = Base Poly 1

Proof

Step Hyp Ref Expression
1 noel ¬ a
2 noel ¬ a 1 𝑜 × 0
3 eqid Poly 1 = Poly 1
4 eqid Base Poly 1 = Base Poly 1
5 base0 = Base
6 3 4 5 ply1basf a Base Poly 1 a : 0 1 𝑜
7 0nn0 0 0
8 7 fconst6 1 𝑜 × 0 : 1 𝑜 0
9 nn0ex 0 V
10 1oex 1 𝑜 V
11 9 10 elmap 1 𝑜 × 0 0 1 𝑜 1 𝑜 × 0 : 1 𝑜 0
12 8 11 mpbir 1 𝑜 × 0 0 1 𝑜
13 ffvelrn a : 0 1 𝑜 1 𝑜 × 0 0 1 𝑜 a 1 𝑜 × 0
14 6 12 13 sylancl a Base Poly 1 a 1 𝑜 × 0
15 2 14 mto ¬ a Base Poly 1
16 1 15 2false a a Base Poly 1
17 16 eqriv = Base Poly 1