Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
00ply1bas
Next ⟩
ply1basfvi
Metamath Proof Explorer
Ascii
Unicode
Theorem
00ply1bas
Description:
Lemma for
ply1basfvi
and
deg1fvi
.
(Contributed by
Stefan O'Rear
, 28-Mar-2015)
Ref
Expression
Assertion
00ply1bas
⊢
∅
=
Base
Poly
1
⁡
∅
Proof
Step
Hyp
Ref
Expression
1
noel
⊢
¬
a
∈
∅
2
noel
⊢
¬
a
⁡
1
𝑜
×
0
∈
∅
3
eqid
⊢
Poly
1
⁡
∅
=
Poly
1
⁡
∅
4
eqid
⊢
Base
Poly
1
⁡
∅
=
Base
Poly
1
⁡
∅
5
base0
⊢
∅
=
Base
∅
6
3
4
5
ply1basf
⊢
a
∈
Base
Poly
1
⁡
∅
→
a
:
ℕ
0
1
𝑜
⟶
∅
7
0nn0
⊢
0
∈
ℕ
0
8
7
fconst6
⊢
1
𝑜
×
0
:
1
𝑜
⟶
ℕ
0
9
nn0ex
⊢
ℕ
0
∈
V
10
1oex
⊢
1
𝑜
∈
V
11
9
10
elmap
⊢
1
𝑜
×
0
∈
ℕ
0
1
𝑜
↔
1
𝑜
×
0
:
1
𝑜
⟶
ℕ
0
12
8
11
mpbir
⊢
1
𝑜
×
0
∈
ℕ
0
1
𝑜
13
ffvelrn
⊢
a
:
ℕ
0
1
𝑜
⟶
∅
∧
1
𝑜
×
0
∈
ℕ
0
1
𝑜
→
a
⁡
1
𝑜
×
0
∈
∅
14
6
12
13
sylancl
⊢
a
∈
Base
Poly
1
⁡
∅
→
a
⁡
1
𝑜
×
0
∈
∅
15
2
14
mto
⊢
¬
a
∈
Base
Poly
1
⁡
∅
16
1
15
2false
⊢
a
∈
∅
↔
a
∈
Base
Poly
1
⁡
∅
17
16
eqriv
⊢
∅
=
Base
Poly
1
⁡
∅