Metamath Proof Explorer


Theorem 01eq0ring

Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019)

Ref Expression
Hypotheses 0ring.b B = Base R
0ring.0 0 ˙ = 0 R
0ring01eq.1 1 ˙ = 1 R
Assertion 01eq0ring R Ring 0 ˙ = 1 ˙ B = 0 ˙

Proof

Step Hyp Ref Expression
1 0ring.b B = Base R
2 0ring.0 0 ˙ = 0 R
3 0ring01eq.1 1 ˙ = 1 R
4 1 fvexi B V
5 hashv01gt1 B V B = 0 B = 1 1 < B
6 4 5 ax-mp B = 0 B = 1 1 < B
7 hasheq0 B V B = 0 B =
8 4 7 ax-mp B = 0 B =
9 ne0i 0 ˙ B B
10 eqneqall B = B B 1 0 ˙ 1 ˙
11 9 10 syl5com 0 ˙ B B = B 1 0 ˙ 1 ˙
12 8 11 syl5bi 0 ˙ B B = 0 B 1 0 ˙ 1 ˙
13 1 2 ring0cl R Ring 0 ˙ B
14 12 13 syl11 B = 0 R Ring B 1 0 ˙ 1 ˙
15 eqneqall B = 1 B 1 0 ˙ 1 ˙
16 15 a1d B = 1 R Ring B 1 0 ˙ 1 ˙
17 1 3 2 ring1ne0 R Ring 1 < B 1 ˙ 0 ˙
18 17 necomd R Ring 1 < B 0 ˙ 1 ˙
19 18 ex R Ring 1 < B 0 ˙ 1 ˙
20 19 a1i B 1 R Ring 1 < B 0 ˙ 1 ˙
21 20 com13 1 < B R Ring B 1 0 ˙ 1 ˙
22 14 16 21 3jaoi B = 0 B = 1 1 < B R Ring B 1 0 ˙ 1 ˙
23 6 22 ax-mp R Ring B 1 0 ˙ 1 ˙
24 23 necon4d R Ring 0 ˙ = 1 ˙ B = 1
25 24 imp R Ring 0 ˙ = 1 ˙ B = 1
26 1 2 0ring R Ring B = 1 B = 0 ˙
27 25 26 syldan R Ring 0 ˙ = 1 ˙ B = 0 ˙