Metamath Proof Explorer


Theorem 01eq0ring

Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019) (Proof shortened by SN, 23-Feb-2025)

Ref Expression
Hypotheses 0ring.b B = Base R
0ring.0 0 ˙ = 0 R
0ring01eq.1 1 ˙ = 1 R
Assertion 01eq0ring R Ring 0 ˙ = 1 ˙ B = 0 ˙

Proof

Step Hyp Ref Expression
1 0ring.b B = Base R
2 0ring.0 0 ˙ = 0 R
3 0ring01eq.1 1 ˙ = 1 R
4 eqcom 0 ˙ = 1 ˙ 1 ˙ = 0 ˙
5 1 2 ring0cl R Ring 0 ˙ B
6 5 ne0d R Ring B
7 5 adantr R Ring x B 0 ˙ B
8 1 3 2 ring1eq0 R Ring x B 0 ˙ B 1 ˙ = 0 ˙ x = 0 ˙
9 7 8 mpd3an3 R Ring x B 1 ˙ = 0 ˙ x = 0 ˙
10 9 impancom R Ring 1 ˙ = 0 ˙ x B x = 0 ˙
11 10 ralrimiv R Ring 1 ˙ = 0 ˙ x B x = 0 ˙
12 eqsn B B = 0 ˙ x B x = 0 ˙
13 12 biimpar B x B x = 0 ˙ B = 0 ˙
14 6 11 13 syl2an2r R Ring 1 ˙ = 0 ˙ B = 0 ˙
15 4 14 sylan2b R Ring 0 ˙ = 1 ˙ B = 0 ˙