Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
01sqrexlem3
Next ⟩
01sqrexlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
01sqrexlem3
Description:
Lemma for
01sqrex
.
(Contributed by
Mario Carneiro
, 10-Jul-2013)
Ref
Expression
Hypotheses
01sqrexlem1.1
⊢
S
=
x
∈
ℝ
+
|
x
2
≤
A
01sqrexlem1.2
⊢
B
=
sup
S
ℝ
<
Assertion
01sqrexlem3
⊢
A
∈
ℝ
+
∧
A
≤
1
→
S
⊆
ℝ
∧
S
≠
∅
∧
∃
z
∈
ℝ
∀
y
∈
S
y
≤
z
Proof
Step
Hyp
Ref
Expression
1
01sqrexlem1.1
⊢
S
=
x
∈
ℝ
+
|
x
2
≤
A
2
01sqrexlem1.2
⊢
B
=
sup
S
ℝ
<
3
ssrab2
⊢
x
∈
ℝ
+
|
x
2
≤
A
⊆
ℝ
+
4
rpssre
⊢
ℝ
+
⊆
ℝ
5
3
4
sstri
⊢
x
∈
ℝ
+
|
x
2
≤
A
⊆
ℝ
6
1
5
eqsstri
⊢
S
⊆
ℝ
7
6
a1i
⊢
A
∈
ℝ
+
∧
A
≤
1
→
S
⊆
ℝ
8
1
2
01sqrexlem2
⊢
A
∈
ℝ
+
∧
A
≤
1
→
A
∈
S
9
8
ne0d
⊢
A
∈
ℝ
+
∧
A
≤
1
→
S
≠
∅
10
1re
⊢
1
∈
ℝ
11
1
2
01sqrexlem1
⊢
A
∈
ℝ
+
∧
A
≤
1
→
∀
y
∈
S
y
≤
1
12
brralrspcev
⊢
1
∈
ℝ
∧
∀
y
∈
S
y
≤
1
→
∃
z
∈
ℝ
∀
y
∈
S
y
≤
z
13
10
11
12
sylancr
⊢
A
∈
ℝ
+
∧
A
≤
1
→
∃
z
∈
ℝ
∀
y
∈
S
y
≤
z
14
7
9
13
3jca
⊢
A
∈
ℝ
+
∧
A
≤
1
→
S
⊆
ℝ
∧
S
≠
∅
∧
∃
z
∈
ℝ
∀
y
∈
S
y
≤
z