Metamath Proof Explorer


Theorem 0bdop

Description: The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0bdop 0 hop BndLinOp

Proof

Step Hyp Ref Expression
1 0lnop 0 hop LinOp
2 nmop0 norm op 0 hop = 0
3 0ltpnf 0 < +∞
4 2 3 eqbrtri norm op 0 hop < +∞
5 elbdop 0 hop BndLinOp 0 hop LinOp norm op 0 hop < +∞
6 1 4 5 mpbir2an 0 hop BndLinOp