Metamath Proof Explorer


Theorem 0blo

Description: The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses 0blo.0 Z = U 0 op W
0blo.7 B = U BLnOp W
Assertion 0blo U NrmCVec W NrmCVec Z B

Proof

Step Hyp Ref Expression
1 0blo.0 Z = U 0 op W
2 0blo.7 B = U BLnOp W
3 eqid U LnOp W = U LnOp W
4 1 3 0lno U NrmCVec W NrmCVec Z U LnOp W
5 eqid U normOp OLD W = U normOp OLD W
6 5 1 nmoo0 U NrmCVec W NrmCVec U normOp OLD W Z = 0
7 0re 0
8 6 7 eqeltrdi U NrmCVec W NrmCVec U normOp OLD W Z
9 5 3 2 isblo2 U NrmCVec W NrmCVec Z B Z U LnOp W U normOp OLD W Z
10 4 8 9 mpbir2and U NrmCVec W NrmCVec Z B