Metamath Proof Explorer


Theorem 0cat

Description: The empty set is a category, theempty category, see example 3.3(4.c) in Adamek p. 24. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion 0cat Cat

Proof

Step Hyp Ref Expression
1 0ex V
2 base0 = Base
3 0catg V = Base Cat
4 1 2 3 mp2an Cat