Metamath Proof Explorer


Theorem 0catg

Description: Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion 0catg C V = Base C C Cat

Proof

Step Hyp Ref Expression
1 simpr C V = Base C = Base C
2 eqidd C V = Base C Hom C = Hom C
3 eqidd C V = Base C comp C = comp C
4 simpl C V = Base C C V
5 noel ¬ x
6 5 pm2.21i x x Hom C x
7 6 adantl C V = Base C x x Hom C x
8 simpr1 C V = Base C x y f y Hom C x x
9 5 pm2.21i x y x comp C x f = f
10 8 9 syl C V = Base C x y f y Hom C x y x comp C x f = f
11 simpr1 C V = Base C x y f x Hom C y x
12 5 pm2.21i x f x x comp C y = f
13 11 12 syl C V = Base C x y f x Hom C y f x x comp C y = f
14 simp21 C V = Base C x y z f x Hom C y g y Hom C z x
15 5 pm2.21i x g x y comp C z f x Hom C z
16 14 15 syl C V = Base C x y z f x Hom C y g y Hom C z g x y comp C z f x Hom C z
17 simp2ll C V = Base C x y z w f x Hom C y g y Hom C z h z Hom C w x
18 5 pm2.21i x h y z comp C w g x y comp C w f = h x z comp C w g x y comp C z f
19 17 18 syl C V = Base C x y z w f x Hom C y g y Hom C z h z Hom C w h y z comp C w g x y comp C w f = h x z comp C w g x y comp C z f
20 1 2 3 4 7 10 13 16 19 iscatd C V = Base C C Cat