Metamath Proof Explorer


Theorem 0cld

Description: The empty set is closed. Part of Theorem 6.1(1) of Munkres p. 93. (Contributed by NM, 4-Oct-2006)

Ref Expression
Assertion 0cld J Top Clsd J

Proof

Step Hyp Ref Expression
1 dif0 J = J
2 1 topopn J Top J J
3 0ss J
4 eqid J = J
5 4 iscld2 J Top J Clsd J J J
6 3 5 mpan2 J Top Clsd J J J
7 2 6 mpbird J Top Clsd J