Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Some deductions from the field axioms for complex numbers
0cn
Next ⟩
0cnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
0cn
Description:
Zero is a complex number. See also
0cnALT
.
(Contributed by
NM
, 19-Feb-2005)
Ref
Expression
Assertion
0cn
⊢
0
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
ax-i2m1
⊢
i
⁢
i
+
1
=
0
2
ax-icn
⊢
i
∈
ℂ
3
mulcl
⊢
i
∈
ℂ
∧
i
∈
ℂ
→
i
⁢
i
∈
ℂ
4
2
2
3
mp2an
⊢
i
⁢
i
∈
ℂ
5
ax-1cn
⊢
1
∈
ℂ
6
addcl
⊢
i
⁢
i
∈
ℂ
∧
1
∈
ℂ
→
i
⁢
i
+
1
∈
ℂ
7
4
5
6
mp2an
⊢
i
⁢
i
+
1
∈
ℂ
8
1
7
eqeltrri
⊢
0
∈
ℂ