Metamath Proof Explorer


Theorem 0cnALT

Description: Alternate proof of 0cn which does not reference ax-1cn . (Contributed by NM, 19-Feb-2005) (Revised by Mario Carneiro, 27-May-2016) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 0cnALT 0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 cnre i x y i = x + i y
3 ax-rnegex x z x + z = 0
4 readdcl x z x + z
5 eleq1 x + z = 0 x + z 0
6 4 5 syl5ibcom x z x + z = 0 0
7 6 rexlimdva x z x + z = 0 0
8 3 7 mpd x 0
9 8 adantr x y i = x + i y 0
10 9 rexlimiva x y i = x + i y 0
11 1 2 10 mp2b 0
12 11 recni 0