Metamath Proof Explorer


Theorem 0cnALT2

Description: Alternate proof of 0cnALT which is shorter, but depends on ax-8 , ax-13 , ax-sep , ax-nul , ax-pow , ax-pr , ax-un , and every complex number axiom except ax-pre-mulgt0 and ax-pre-sup . (Contributed by NM, 19-Feb-2005) (Revised by Mario Carneiro, 27-May-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 0cnALT2 0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 cnegex i x i + x = 0
3 1 2 ax-mp x i + x = 0
4 addcl i x i + x
5 1 4 mpan x i + x
6 eleq1 i + x = 0 i + x 0
7 5 6 syl5ibcom x i + x = 0 0
8 7 rexlimiv x i + x = 0 0
9 3 8 ax-mp 0