Metamath Proof Explorer


Theorem 0csh0

Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018) (Revised by AV, 17-Nov-2018)

Ref Expression
Assertion 0csh0 cyclShift N =

Proof

Step Hyp Ref Expression
1 df-csh cyclShift = w f | l 0 f Fn 0 ..^ l , n if w = w substr n mod w w ++ w prefix n mod w
2 1 a1i N cyclShift = w f | l 0 f Fn 0 ..^ l , n if w = w substr n mod w w ++ w prefix n mod w
3 iftrue w = if w = w substr n mod w w ++ w prefix n mod w =
4 3 ad2antrl N w = n = N if w = w substr n mod w w ++ w prefix n mod w =
5 0nn0 0 0
6 f0 : V
7 ffn : V Fn
8 fzo0 0 ..^ 0 =
9 8 eqcomi = 0 ..^ 0
10 9 fneq2i Fn Fn 0 ..^ 0
11 7 10 sylib : V Fn 0 ..^ 0
12 6 11 ax-mp Fn 0 ..^ 0
13 id 0 0 0 0
14 oveq2 l = 0 0 ..^ l = 0 ..^ 0
15 14 fneq2d l = 0 Fn 0 ..^ l Fn 0 ..^ 0
16 15 adantl 0 0 l = 0 Fn 0 ..^ l Fn 0 ..^ 0
17 13 16 rspcedv 0 0 Fn 0 ..^ 0 l 0 Fn 0 ..^ l
18 5 12 17 mp2 l 0 Fn 0 ..^ l
19 0ex V
20 fneq1 f = f Fn 0 ..^ l Fn 0 ..^ l
21 20 rexbidv f = l 0 f Fn 0 ..^ l l 0 Fn 0 ..^ l
22 19 21 elab f | l 0 f Fn 0 ..^ l l 0 Fn 0 ..^ l
23 18 22 mpbir f | l 0 f Fn 0 ..^ l
24 23 a1i N f | l 0 f Fn 0 ..^ l
25 id N N
26 19 a1i N V
27 2 4 24 25 26 ovmpod N cyclShift N =
28 cshnz ¬ N cyclShift N =
29 27 28 pm2.61i cyclShift N =