Metamath Proof Explorer


Theorem 0cxp

Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion 0cxp A A 0 0 A = 0

Proof

Step Hyp Ref Expression
1 0cn 0
2 cxpval 0 A 0 A = if 0 = 0 if A = 0 1 0 e A log 0
3 1 2 mpan A 0 A = if 0 = 0 if A = 0 1 0 e A log 0
4 eqid 0 = 0
5 4 iftruei if 0 = 0 if A = 0 1 0 e A log 0 = if A = 0 1 0
6 3 5 eqtrdi A 0 A = if A = 0 1 0
7 ifnefalse A 0 if A = 0 1 0 = 0
8 6 7 sylan9eq A A 0 0 A = 0