Metamath Proof Explorer


Theorem 0cxpd

Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φ A
cxpefd.2 φ A 0
Assertion 0cxpd φ 0 A = 0

Proof

Step Hyp Ref Expression
1 cxp0d.1 φ A
2 cxpefd.2 φ A 0
3 0cxp A A 0 0 A = 0
4 1 2 3 syl2anc φ 0 A = 0