Metamath Proof Explorer


Theorem 0cyg

Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis cygctb.1 B = Base G
Assertion 0cyg G Grp B 1 𝑜 G CycGrp

Proof

Step Hyp Ref Expression
1 cygctb.1 B = Base G
2 eqid G = G
3 simpl G Grp B 1 𝑜 G Grp
4 eqid 0 G = 0 G
5 1 4 grpidcl G Grp 0 G B
6 5 adantr G Grp B 1 𝑜 0 G B
7 0z 0
8 en1eqsn 0 G B B 1 𝑜 B = 0 G
9 5 8 sylan G Grp B 1 𝑜 B = 0 G
10 9 eleq2d G Grp B 1 𝑜 x B x 0 G
11 10 biimpa G Grp B 1 𝑜 x B x 0 G
12 velsn x 0 G x = 0 G
13 11 12 sylib G Grp B 1 𝑜 x B x = 0 G
14 1 4 2 mulg0 0 G B 0 G 0 G = 0 G
15 6 14 syl G Grp B 1 𝑜 0 G 0 G = 0 G
16 15 adantr G Grp B 1 𝑜 x B 0 G 0 G = 0 G
17 13 16 eqtr4d G Grp B 1 𝑜 x B x = 0 G 0 G
18 oveq1 n = 0 n G 0 G = 0 G 0 G
19 18 rspceeqv 0 x = 0 G 0 G n x = n G 0 G
20 7 17 19 sylancr G Grp B 1 𝑜 x B n x = n G 0 G
21 1 2 3 6 20 iscygd G Grp B 1 𝑜 G CycGrp