Metamath Proof Explorer


Theorem 0dgr

Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion 0dgr A deg × A = 0

Proof

Step Hyp Ref Expression
1 ssid
2 plyconst A × A Poly
3 1 2 mpan A × A Poly
4 0nn0 0 0
5 4 a1i A 0 0
6 simpl A k 0 0 A
7 fconstmpt × A = z A
8 0z 0
9 exp0 z z 0 = 1
10 9 oveq2d z A z 0 = A 1
11 mulid1 A A 1 = A
12 10 11 sylan9eqr A z A z 0 = A
13 simpl A z A
14 12 13 eqeltrd A z A z 0
15 oveq2 k = 0 z k = z 0
16 15 oveq2d k = 0 A z k = A z 0
17 16 fsum1 0 A z 0 k = 0 0 A z k = A z 0
18 8 14 17 sylancr A z k = 0 0 A z k = A z 0
19 18 12 eqtrd A z k = 0 0 A z k = A
20 19 mpteq2dva A z k = 0 0 A z k = z A
21 7 20 eqtr4id A × A = z k = 0 0 A z k
22 3 5 6 21 dgrle A deg × A 0
23 dgrcl × A Poly deg × A 0
24 nn0le0eq0 deg × A 0 deg × A 0 deg × A = 0
25 3 23 24 3syl A deg × A 0 deg × A = 0
26 22 25 mpbid A deg × A = 0