Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
1 2
|
coeid |
|
4 |
3
|
adantr |
|
5 |
|
simplr |
|
6 |
5
|
oveq2d |
|
7 |
6
|
sumeq1d |
|
8 |
|
0z |
|
9 |
|
exp0 |
|
10 |
9
|
adantl |
|
11 |
10
|
oveq2d |
|
12 |
1
|
coef3 |
|
13 |
|
0nn0 |
|
14 |
|
ffvelrn |
|
15 |
12 13 14
|
sylancl |
|
16 |
15
|
ad2antrr |
|
17 |
16
|
mulid1d |
|
18 |
11 17
|
eqtrd |
|
19 |
18 16
|
eqeltrd |
|
20 |
|
fveq2 |
|
21 |
|
oveq2 |
|
22 |
20 21
|
oveq12d |
|
23 |
22
|
fsum1 |
|
24 |
8 19 23
|
sylancr |
|
25 |
24 18
|
eqtrd |
|
26 |
7 25
|
eqtrd |
|
27 |
26
|
mpteq2dva |
|
28 |
4 27
|
eqtrd |
|
29 |
|
fconstmpt |
|
30 |
28 29
|
eqtr4di |
|
31 |
30
|
fveq1d |
|
32 |
|
0cn |
|
33 |
|
fvex |
|
34 |
33
|
fvconst2 |
|
35 |
32 34
|
ax-mp |
|
36 |
31 35
|
eqtrdi |
|
37 |
36
|
sneqd |
|
38 |
37
|
xpeq2d |
|
39 |
30 38
|
eqtr4d |
|
40 |
39
|
ex |
|
41 |
|
plyf |
|
42 |
|
ffvelrn |
|
43 |
41 32 42
|
sylancl |
|
44 |
|
0dgr |
|
45 |
43 44
|
syl |
|
46 |
|
fveqeq2 |
|
47 |
45 46
|
syl5ibrcom |
|
48 |
40 47
|
impbid |
|