Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
0disj
Next ⟩
disjxsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
0disj
Description:
Any collection of empty sets is disjoint.
(Contributed by
Mario Carneiro
, 14-Nov-2016)
Ref
Expression
Assertion
0disj
⊢
Disj
x
∈
A
∅
Proof
Step
Hyp
Ref
Expression
1
0ss
⊢
∅
⊆
x
2
1
rgenw
⊢
∀
x
∈
A
∅
⊆
x
3
sndisj
⊢
Disj
x
∈
A
x
4
disjss2
⊢
∀
x
∈
A
∅
⊆
x
→
Disj
x
∈
A
x
→
Disj
x
∈
A
∅
5
2
3
4
mp2
⊢
Disj
x
∈
A
∅