Metamath Proof Explorer


Theorem 0dp2dp

Description: Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses 0dp2dp.a A 0
0dp2dp.b B +
Assertion 0dp2dp Could not format assertion : No typesetting found for |- ( ( 0 . _ A B ) x. ; 1 0 ) = ( A . B ) with typecode |-

Proof

Step Hyp Ref Expression
1 0dp2dp.a A 0
2 0dp2dp.b B +
3 0p1e1 0 + 1 = 1
4 0z 0
5 1z 1
6 1 2 3 4 5 dpexpp1 Could not format ( ( A . B ) x. ( ; 1 0 ^ 0 ) ) = ( ( 0 . _ A B ) x. ( ; 1 0 ^ 1 ) ) : No typesetting found for |- ( ( A . B ) x. ( ; 1 0 ^ 0 ) ) = ( ( 0 . _ A B ) x. ( ; 1 0 ^ 1 ) ) with typecode |-
7 10nn0 10 0
8 7 nn0cni 10
9 exp0 10 10 0 = 1
10 8 9 ax-mp 10 0 = 1
11 10 oveq2i A . B 10 0 = A . B 1
12 exp1 10 10 1 = 10
13 8 12 ax-mp 10 1 = 10
14 13 oveq2i Could not format ( ( 0 . _ A B ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ A B ) x. ; 1 0 ) : No typesetting found for |- ( ( 0 . _ A B ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ A B ) x. ; 1 0 ) with typecode |-
15 6 11 14 3eqtr3ri Could not format ( ( 0 . _ A B ) x. ; 1 0 ) = ( ( A . B ) x. 1 ) : No typesetting found for |- ( ( 0 . _ A B ) x. ; 1 0 ) = ( ( A . B ) x. 1 ) with typecode |-
16 1 2 rpdpcl A . B +
17 rpcn A . B + A . B
18 16 17 ax-mp A . B
19 mulid1 A . B A . B 1 = A . B
20 18 19 ax-mp A . B 1 = A . B
21 15 20 eqtri Could not format ( ( 0 . _ A B ) x. ; 1 0 ) = ( A . B ) : No typesetting found for |- ( ( 0 . _ A B ) x. ; 1 0 ) = ( A . B ) with typecode |-