Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
0e0iccpnf
Next ⟩
ge0addcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
0e0iccpnf
Description:
0 is a member of
( 0
,
+oo )
.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
0e0iccpnf
⊢
0
∈
0
+∞
Proof
Step
Hyp
Ref
Expression
1
0xr
⊢
0
∈
ℝ
*
2
0le0
⊢
0
≤
0
3
elxrge0
⊢
0
∈
0
+∞
↔
0
∈
ℝ
*
∧
0
≤
0
4
1
2
3
mpbir2an
⊢
0
∈
0
+∞