Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
0e0icopnf
Next ⟩
0e0iccpnf
Metamath Proof Explorer
Ascii
Unicode
Theorem
0e0icopnf
Description:
0 is a member of
( 0 [,) +oo )
.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
0e0icopnf
⊢
0
∈
0
+∞
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
0le0
⊢
0
≤
0
3
elrege0
⊢
0
∈
0
+∞
↔
0
∈
ℝ
∧
0
≤
0
4
1
2
3
mpbir2an
⊢
0
∈
0
+∞