Metamath Proof Explorer


Theorem 0edg0rgr

Description: A graph is 0-regular if it has no edges. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0edg0rgr G W iEdg G = G RegGraph 0

Proof

Step Hyp Ref Expression
1 simpr G W iEdg G = v Vtx G v Vtx G
2 simplr G W iEdg G = v Vtx G iEdg G =
3 eqid Vtx G = Vtx G
4 eqid iEdg G = iEdg G
5 3 4 vtxdg0e v Vtx G iEdg G = VtxDeg G v = 0
6 1 2 5 syl2anc G W iEdg G = v Vtx G VtxDeg G v = 0
7 6 ralrimiva G W iEdg G = v Vtx G VtxDeg G v = 0
8 0xnn0 0 0 *
9 7 8 jctil G W iEdg G = 0 0 * v Vtx G VtxDeg G v = 0
10 8 a1i iEdg G = 0 0 *
11 eqid VtxDeg G = VtxDeg G
12 3 11 isrgr G W 0 0 * G RegGraph 0 0 0 * v Vtx G VtxDeg G v = 0
13 10 12 sylan2 G W iEdg G = G RegGraph 0 0 0 * v Vtx G VtxDeg G v = 0
14 9 13 mpbird G W iEdg G = G RegGraph 0