Metamath Proof Explorer


Theorem 0el

Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004)

Ref Expression
Assertion 0el A x A y ¬ y x

Proof

Step Hyp Ref Expression
1 risset A x A x =
2 eq0 x = y ¬ y x
3 2 rexbii x A x = x A y ¬ y x
4 1 3 bitri A x A y ¬ y x