Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
0el
Next ⟩
n0el
Metamath Proof Explorer
Ascii
Unicode
Theorem
0el
Description:
Membership of the empty set in another class.
(Contributed by
NM
, 29-Jun-2004)
Ref
Expression
Assertion
0el
⊢
∅
∈
A
↔
∃
x
∈
A
∀
y
¬
y
∈
x
Proof
Step
Hyp
Ref
Expression
1
risset
⊢
∅
∈
A
↔
∃
x
∈
A
x
=
∅
2
eq0
⊢
x
=
∅
↔
∀
y
¬
y
∈
x
3
2
rexbii
⊢
∃
x
∈
A
x
=
∅
↔
∃
x
∈
A
∀
y
¬
y
∈
x
4
1
3
bitri
⊢
∅
∈
A
↔
∃
x
∈
A
∀
y
¬
y
∈
x