Metamath Proof Explorer


Theorem 0elcpmat

Description: The zero of the ring of all polynomial matrices over the ring R is a constant polynomial matrix. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses 0elcpmat.s S = N ConstPolyMat R
0elcpmat.p P = Poly 1 R
0elcpmat.c C = N Mat P
Assertion 0elcpmat N Fin R Ring 0 C S

Proof

Step Hyp Ref Expression
1 0elcpmat.s S = N ConstPolyMat R
2 0elcpmat.p P = Poly 1 R
3 0elcpmat.c C = N Mat P
4 1 2 3 cpmatsubgpmat N Fin R Ring S SubGrp C
5 eqid 0 C = 0 C
6 5 subg0cl S SubGrp C 0 C S
7 4 6 syl N Fin R Ring 0 C S