Metamath Proof Explorer


Theorem 0ellim

Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994)

Ref Expression
Assertion 0ellim Lim A A

Proof

Step Hyp Ref Expression
1 nlim0 ¬ Lim
2 limeq A = Lim A Lim
3 1 2 mtbiri A = ¬ Lim A
4 3 necon2ai Lim A A
5 limord Lim A Ord A
6 ord0eln0 Ord A A A
7 5 6 syl Lim A A A
8 4 7 mpbird Lim A A