Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
0ellim
Next ⟩
limelon
Metamath Proof Explorer
Ascii
Unicode
Theorem
0ellim
Description:
A limit ordinal contains the empty set.
(Contributed by
NM
, 15-May-1994)
Ref
Expression
Assertion
0ellim
⊢
Lim
⁡
A
→
∅
∈
A
Proof
Step
Hyp
Ref
Expression
1
nlim0
⊢
¬
Lim
⁡
∅
2
limeq
⊢
A
=
∅
→
Lim
⁡
A
↔
Lim
⁡
∅
3
1
2
mtbiri
⊢
A
=
∅
→
¬
Lim
⁡
A
4
3
necon2ai
⊢
Lim
⁡
A
→
A
≠
∅
5
limord
⊢
Lim
⁡
A
→
Ord
⁡
A
6
ord0eln0
⊢
Ord
⁡
A
→
∅
∈
A
↔
A
≠
∅
7
5
6
syl
⊢
Lim
⁡
A
→
∅
∈
A
↔
A
≠
∅
8
4
7
mpbird
⊢
Lim
⁡
A
→
∅
∈
A