Step |
Hyp |
Ref |
Expression |
1 |
|
0ellimcdiv.f |
|
2 |
|
0ellimcdiv.g |
|
3 |
|
0ellimcdiv.h |
|
4 |
|
0ellimcdiv.b |
|
5 |
|
0ellimcdiv.c |
|
6 |
|
0ellimcdiv.0limf |
|
7 |
|
0ellimcdiv.d |
|
8 |
|
0ellimcdiv.dne0 |
|
9 |
|
0cnd |
|
10 |
5
|
eldifad |
|
11 |
10 2
|
fmptd |
|
12 |
1 4 6
|
limcmptdm |
|
13 |
|
limcrcl |
|
14 |
7 13
|
syl |
|
15 |
14
|
simp3d |
|
16 |
11 12 15
|
ellimc3 |
|
17 |
7 16
|
mpbid |
|
18 |
17
|
simprd |
|
19 |
17
|
simpld |
|
20 |
19 8
|
absrpcld |
|
21 |
20
|
rphalfcld |
|
22 |
|
breq2 |
|
23 |
22
|
imbi2d |
|
24 |
23
|
rexralbidv |
|
25 |
24
|
rspccva |
|
26 |
18 21 25
|
syl2anc |
|
27 |
|
simpl1l |
|
28 |
|
simpl3 |
|
29 |
|
simpr |
|
30 |
|
simpl2 |
|
31 |
28 29 30
|
mp2d |
|
32 |
20
|
rpcnd |
|
33 |
32
|
2halvesd |
|
34 |
33
|
eqcomd |
|
35 |
34
|
oveq1d |
|
36 |
|
2cnd |
|
37 |
|
2ne0 |
|
38 |
37
|
a1i |
|
39 |
19 36 38
|
absdivd |
|
40 |
|
2re |
|
41 |
40
|
a1i |
|
42 |
|
0le2 |
|
43 |
42
|
a1i |
|
44 |
41 43
|
absidd |
|
45 |
44
|
oveq2d |
|
46 |
39 45
|
eqtr2d |
|
47 |
46
|
oveq2d |
|
48 |
21
|
rpcnd |
|
49 |
48 48
|
pncand |
|
50 |
35 47 49
|
3eqtr3rd |
|
51 |
50
|
3ad2ant1 |
|
52 |
46
|
eqcomd |
|
53 |
52
|
3ad2ant1 |
|
54 |
53
|
oveq2d |
|
55 |
19
|
adantr |
|
56 |
55
|
abscld |
|
57 |
56
|
3adant3 |
|
58 |
11
|
ffvelrnda |
|
59 |
58
|
3adant3 |
|
60 |
59
|
abscld |
|
61 |
19
|
3ad2ant1 |
|
62 |
61 59
|
subcld |
|
63 |
62
|
abscld |
|
64 |
60 63
|
readdcld |
|
65 |
57
|
rehalfcld |
|
66 |
60 65
|
readdcld |
|
67 |
58 55
|
pncan3d |
|
68 |
67
|
eqcomd |
|
69 |
68
|
fveq2d |
|
70 |
55 58
|
subcld |
|
71 |
58 70
|
abstrid |
|
72 |
69 71
|
eqbrtrd |
|
73 |
72
|
3adant3 |
|
74 |
61 59
|
abssubd |
|
75 |
|
simp3 |
|
76 |
74 75
|
eqbrtrd |
|
77 |
63 65 60 76
|
ltadd2dd |
|
78 |
57 64 66 73 77
|
lelttrd |
|
79 |
58
|
abscld |
|
80 |
79
|
3adant3 |
|
81 |
57 65 80
|
ltsubaddd |
|
82 |
78 81
|
mpbird |
|
83 |
54 82
|
eqbrtrd |
|
84 |
51 83
|
eqbrtrd |
|
85 |
27 28 31 84
|
syl3anc |
|
86 |
85
|
3exp1 |
|
87 |
86
|
ralimdv2 |
|
88 |
87
|
reximdva |
|
89 |
26 88
|
mpd |
|
90 |
89
|
adantr |
|
91 |
|
simpr |
|
92 |
19
|
adantr |
|
93 |
8
|
adantr |
|
94 |
92 93
|
absrpcld |
|
95 |
94
|
rphalfcld |
|
96 |
91 95
|
rpmulcld |
|
97 |
96
|
ex |
|
98 |
97
|
imdistani |
|
99 |
|
eleq1 |
|
100 |
99
|
anbi2d |
|
101 |
|
breq2 |
|
102 |
101
|
imbi2d |
|
103 |
102
|
rexralbidv |
|
104 |
100 103
|
imbi12d |
|
105 |
4 1
|
fmptd |
|
106 |
105 12 15
|
ellimc3 |
|
107 |
6 106
|
mpbid |
|
108 |
107
|
simprd |
|
109 |
108
|
r19.21bi |
|
110 |
104 109
|
vtoclg |
|
111 |
96 98 110
|
sylc |
|
112 |
111
|
3ad2ant1 |
|
113 |
|
simp12 |
|
114 |
|
simp2 |
|
115 |
113 114
|
ifcld |
|
116 |
|
nfv |
|
117 |
|
nfv |
|
118 |
|
nfra1 |
|
119 |
116 117 118
|
nf3an |
|
120 |
|
nfv |
|
121 |
|
nfra1 |
|
122 |
119 120 121
|
nf3an |
|
123 |
|
simp111 |
|
124 |
|
simp112 |
|
125 |
|
simp12 |
|
126 |
123 124 125
|
jca31 |
|
127 |
|
simp2 |
|
128 |
|
simp3l |
|
129 |
126 127 128
|
jca31 |
|
130 |
12
|
adantr |
|
131 |
130
|
3ad2ant1 |
|
132 |
131
|
3ad2ant1 |
|
133 |
132
|
3ad2ant1 |
|
134 |
133 127
|
sseldd |
|
135 |
15
|
adantr |
|
136 |
135
|
3ad2ant1 |
|
137 |
136
|
3ad2ant1 |
|
138 |
137
|
3ad2ant1 |
|
139 |
134 138
|
subcld |
|
140 |
139
|
abscld |
|
141 |
124
|
rpred |
|
142 |
125
|
rpred |
|
143 |
141 142
|
ifcld |
|
144 |
|
simp3r |
|
145 |
|
min1 |
|
146 |
141 142 145
|
syl2anc |
|
147 |
140 143 141 144 146
|
ltletrd |
|
148 |
|
simp113 |
|
149 |
|
rspa |
|
150 |
148 127 149
|
syl2anc |
|
151 |
128 147 150
|
mp2and |
|
152 |
|
simp13 |
|
153 |
|
rspa |
|
154 |
152 127 153
|
syl2anc |
|
155 |
|
min2 |
|
156 |
141 142 155
|
syl2anc |
|
157 |
140 143 142 144 156
|
ltletrd |
|
158 |
128 157
|
jca |
|
159 |
123
|
simpld |
|
160 |
159
|
3ad2ant1 |
|
161 |
|
simp12 |
|
162 |
|
nfv |
|
163 |
|
nfmpt1 |
|
164 |
1 163
|
nfcxfr |
|
165 |
|
nfcv |
|
166 |
164 165
|
nffv |
|
167 |
166
|
nfel1 |
|
168 |
162 167
|
nfim |
|
169 |
|
eleq1 |
|
170 |
169
|
anbi2d |
|
171 |
|
fveq2 |
|
172 |
171
|
eleq1d |
|
173 |
170 172
|
imbi12d |
|
174 |
|
simpr |
|
175 |
1
|
fvmpt2 |
|
176 |
174 4 175
|
syl2anc |
|
177 |
176 4
|
eqeltrd |
|
178 |
168 173 177
|
chvarfv |
|
179 |
178
|
subid1d |
|
180 |
179
|
eqcomd |
|
181 |
180
|
fveq2d |
|
182 |
160 161 181
|
syl2anc |
|
183 |
|
simp3 |
|
184 |
|
simp2 |
|
185 |
183 184
|
mpd |
|
186 |
182 185
|
eqbrtrd |
|
187 |
154 158 186
|
mpd3an23 |
|
188 |
|
simp-7l |
|
189 |
|
simp-4r |
|
190 |
|
eldifsni |
|
191 |
5 190
|
syl |
|
192 |
4 10 191
|
divcld |
|
193 |
192 3
|
fmptd |
|
194 |
193
|
ffvelrnda |
|
195 |
194
|
subid1d |
|
196 |
|
nfmpt1 |
|
197 |
3 196
|
nfcxfr |
|
198 |
197 165
|
nffv |
|
199 |
|
nfcv |
|
200 |
|
nfmpt1 |
|
201 |
2 200
|
nfcxfr |
|
202 |
201 165
|
nffv |
|
203 |
166 199 202
|
nfov |
|
204 |
198 203
|
nfeq |
|
205 |
162 204
|
nfim |
|
206 |
|
fveq2 |
|
207 |
|
fveq2 |
|
208 |
171 207
|
oveq12d |
|
209 |
206 208
|
eqeq12d |
|
210 |
170 209
|
imbi12d |
|
211 |
3
|
fvmpt2 |
|
212 |
174 192 211
|
syl2anc |
|
213 |
176
|
eqcomd |
|
214 |
2
|
fvmpt2 |
|
215 |
174 5 214
|
syl2anc |
|
216 |
215
|
eqcomd |
|
217 |
213 216
|
oveq12d |
|
218 |
212 217
|
eqtrd |
|
219 |
205 210 218
|
chvarfv |
|
220 |
195 219
|
eqtrd |
|
221 |
220
|
fveq2d |
|
222 |
188 189 221
|
syl2anc |
|
223 |
|
simp-6l |
|
224 |
223 189
|
jca |
|
225 |
|
simplr |
|
226 |
|
simpr |
|
227 |
|
nfcv |
|
228 |
202 227
|
nfne |
|
229 |
162 228
|
nfim |
|
230 |
207
|
neeq1d |
|
231 |
170 230
|
imbi12d |
|
232 |
215 191
|
eqnetrd |
|
233 |
229 231 232
|
chvarfv |
|
234 |
178 58 233
|
absdivd |
|
235 |
234
|
adantlr |
|
236 |
235
|
ad2antrr |
|
237 |
178
|
abscld |
|
238 |
58 233
|
absne0d |
|
239 |
237 79 238
|
redivcld |
|
240 |
239
|
adantlr |
|
241 |
240
|
ad2antrr |
|
242 |
|
rpre |
|
243 |
242
|
ad2antlr |
|
244 |
21
|
rpred |
|
245 |
244
|
ad2antrr |
|
246 |
243 245
|
remulcld |
|
247 |
246
|
ad2antrr |
|
248 |
58 233
|
absrpcld |
|
249 |
248
|
adantlr |
|
250 |
249
|
ad2antrr |
|
251 |
247 250
|
rerpdivcld |
|
252 |
243
|
ad2antrr |
|
253 |
|
simp-4l |
|
254 |
|
simpllr |
|
255 |
253 254 237
|
syl2anc |
|
256 |
|
simpr |
|
257 |
255 247 250 256
|
ltdiv1dd |
|
258 |
243
|
recnd |
|
259 |
48
|
ad2antrr |
|
260 |
249
|
rpcnd |
|
261 |
238
|
adantlr |
|
262 |
258 259 260 261
|
divassd |
|
263 |
262
|
adantr |
|
264 |
245 249
|
rerpdivcld |
|
265 |
264
|
adantr |
|
266 |
|
1red |
|
267 |
|
simpllr |
|
268 |
244
|
ad2antrr |
|
269 |
|
1rp |
|
270 |
269
|
a1i |
|
271 |
248
|
adantr |
|
272 |
48
|
div1d |
|
273 |
272
|
ad2antrr |
|
274 |
|
simpr |
|
275 |
273 274
|
eqbrtrd |
|
276 |
268 270 271 275
|
ltdiv23d |
|
277 |
276
|
adantllr |
|
278 |
265 266 267 277
|
ltmul2dd |
|
279 |
263 278
|
eqbrtrd |
|
280 |
258
|
mulid1d |
|
281 |
280
|
adantr |
|
282 |
279 281
|
breqtrd |
|
283 |
282
|
adantr |
|
284 |
241 251 252 257 283
|
lttrd |
|
285 |
236 284
|
eqbrtrd |
|
286 |
224 225 226 285
|
syl21anc |
|
287 |
222 286
|
eqbrtrd |
|
288 |
129 151 187 287
|
syl21anc |
|
289 |
288
|
3exp |
|
290 |
122 289
|
ralrimi |
|
291 |
|
brimralrspcev |
|
292 |
115 290 291
|
syl2anc |
|
293 |
292
|
rexlimdv3a |
|
294 |
112 293
|
mpd |
|
295 |
294
|
rexlimdv3a |
|
296 |
90 295
|
mpd |
|
297 |
296
|
ralrimiva |
|
298 |
193 12 15
|
ellimc3 |
|
299 |
9 297 298
|
mpbir2and |
|