| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnn0 |
|
| 2 |
|
wwlksn |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
adantl |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6
|
iswwlks |
|
| 8 |
|
nncn |
|
| 9 |
|
pncan1 |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
id |
|
| 12 |
10 11
|
eqeltrd |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
adantl |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eleq1d |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
mpbird |
|
| 19 |
|
lbfzo0 |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
|
fveq2 |
|
| 22 |
|
fv0p1e1 |
|
| 23 |
21 22
|
preq12d |
|
| 24 |
23
|
eleq1d |
|
| 25 |
24
|
adantl |
|
| 26 |
20 25
|
rspcdv |
|
| 27 |
|
eleq2 |
|
| 28 |
|
noel |
|
| 29 |
28
|
pm2.21i |
|
| 30 |
27 29
|
biimtrdi |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
adantl |
|
| 33 |
26 32
|
syldc |
|
| 34 |
33
|
3ad2ant3 |
|
| 35 |
34
|
com12 |
|
| 36 |
7 35
|
biimtrid |
|
| 37 |
36
|
expimpd |
|
| 38 |
|
ax-1 |
|
| 39 |
37 38
|
pm2.61i |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
rabeq0 |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
4 42
|
eqtrd |
|