Metamath Proof Explorer


Theorem 0enwwlksnge1

Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Assertion 0enwwlksnge1 Edg G = N N WWalksN G =

Proof

Step Hyp Ref Expression
1 nnnn0 N N 0
2 wwlksn N 0 N WWalksN G = w WWalks G | w = N + 1
3 1 2 syl N N WWalksN G = w WWalks G | w = N + 1
4 3 adantl Edg G = N N WWalksN G = w WWalks G | w = N + 1
5 eqid Vtx G = Vtx G
6 eqid Edg G = Edg G
7 5 6 iswwlks w WWalks G w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G
8 nncn N N
9 pncan1 N N + 1 - 1 = N
10 8 9 syl N N + 1 - 1 = N
11 id N N
12 10 11 eqeltrd N N + 1 - 1
13 12 adantl Edg G = N N + 1 - 1
14 13 adantl w = N + 1 Edg G = N N + 1 - 1
15 oveq1 w = N + 1 w 1 = N + 1 - 1
16 15 eleq1d w = N + 1 w 1 N + 1 - 1
17 16 adantr w = N + 1 Edg G = N w 1 N + 1 - 1
18 14 17 mpbird w = N + 1 Edg G = N w 1
19 lbfzo0 0 0 ..^ w 1 w 1
20 18 19 sylibr w = N + 1 Edg G = N 0 0 ..^ w 1
21 fveq2 i = 0 w i = w 0
22 fv0p1e1 i = 0 w i + 1 = w 1
23 21 22 preq12d i = 0 w i w i + 1 = w 0 w 1
24 23 eleq1d i = 0 w i w i + 1 Edg G w 0 w 1 Edg G
25 24 adantl w = N + 1 Edg G = N i = 0 w i w i + 1 Edg G w 0 w 1 Edg G
26 20 25 rspcdv w = N + 1 Edg G = N i 0 ..^ w 1 w i w i + 1 Edg G w 0 w 1 Edg G
27 eleq2 Edg G = w 0 w 1 Edg G w 0 w 1
28 noel ¬ w 0 w 1
29 28 pm2.21i w 0 w 1 ¬ w = N + 1
30 27 29 syl6bi Edg G = w 0 w 1 Edg G ¬ w = N + 1
31 30 adantr Edg G = N w 0 w 1 Edg G ¬ w = N + 1
32 31 adantl w = N + 1 Edg G = N w 0 w 1 Edg G ¬ w = N + 1
33 26 32 syldc i 0 ..^ w 1 w i w i + 1 Edg G w = N + 1 Edg G = N ¬ w = N + 1
34 33 3ad2ant3 w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G w = N + 1 Edg G = N ¬ w = N + 1
35 34 com12 w = N + 1 Edg G = N w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G ¬ w = N + 1
36 7 35 syl5bi w = N + 1 Edg G = N w WWalks G ¬ w = N + 1
37 36 expimpd w = N + 1 Edg G = N w WWalks G ¬ w = N + 1
38 ax-1 ¬ w = N + 1 Edg G = N w WWalks G ¬ w = N + 1
39 37 38 pm2.61i Edg G = N w WWalks G ¬ w = N + 1
40 39 ralrimiva Edg G = N w WWalks G ¬ w = N + 1
41 rabeq0 w WWalks G | w = N + 1 = w WWalks G ¬ w = N + 1
42 40 41 sylibr Edg G = N w WWalks G | w = N + 1 =
43 4 42 eqtrd Edg G = N N WWalksN G =