Metamath Proof Explorer


Theorem 0er

Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Assertion 0er Er

Proof

Step Hyp Ref Expression
1 rel0 Rel
2 df-br x y x y
3 noel ¬ x y
4 3 pm2.21i x y y x
5 2 4 sylbi x y y x
6 3 pm2.21i x y x z
7 2 6 sylbi x y x z
8 7 adantr x y y z x z
9 noel ¬ x
10 noel ¬ x x
11 9 10 2false x x x
12 df-br x x x x
13 11 12 bitr4i x x x
14 1 5 8 13 iseri Er