Metamath Proof Explorer
Theorem 0er
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)
|
|
Ref |
Expression |
|
Assertion |
0er |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rel0 |
|
2 |
|
df-br |
|
3 |
|
noel |
|
4 |
3
|
pm2.21i |
|
5 |
2 4
|
sylbi |
|
6 |
3
|
pm2.21i |
|
7 |
2 6
|
sylbi |
|
8 |
7
|
adantr |
|
9 |
|
noel |
|
10 |
|
noel |
|
11 |
9 10
|
2false |
|
12 |
|
df-br |
|
13 |
11 12
|
bitr4i |
|
14 |
1 5 8 13
|
iseri |
|