Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
0exp
Next ⟩
expge0
Metamath Proof Explorer
Ascii
Unicode
Theorem
0exp
Description:
Value of zero raised to a positive integer power.
(Contributed by
NM
, 19-Aug-2004)
Ref
Expression
Assertion
0exp
⊢
N
∈
ℕ
→
0
N
=
0
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
0
=
0
2
0cn
⊢
0
∈
ℂ
3
expeq0
⊢
0
∈
ℂ
∧
N
∈
ℕ
→
0
N
=
0
↔
0
=
0
4
2
3
mpan
⊢
N
∈
ℕ
→
0
N
=
0
↔
0
=
0
5
1
4
mpbiri
⊢
N
∈
ℕ
→
0
N
=
0