Metamath Proof Explorer


Theorem 0expd

Description: Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis 0exp.1 φ N
Assertion 0expd φ 0 N = 0

Proof

Step Hyp Ref Expression
1 0exp.1 φ N
2 0exp N 0 N = 0
3 1 2 syl φ 0 N = 0