Metamath Proof Explorer


Theorem 0fallfac

Description: The value of the zero falling factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)

Ref Expression
Assertion 0fallfac N 0 N _ = 0

Proof

Step Hyp Ref Expression
1 0cn 0
2 nnnn0 N N 0
3 fallfacval 0 N 0 0 N _ = k = 0 N 1 0 k
4 1 2 3 sylancr N 0 N _ = k = 0 N 1 0 k
5 nnm1nn0 N N 1 0
6 nn0uz 0 = 0
7 5 6 eleqtrdi N N 1 0
8 elfzelz k 0 N 1 k
9 8 zcnd k 0 N 1 k
10 subcl 0 k 0 k
11 1 9 10 sylancr k 0 N 1 0 k
12 11 adantl N k 0 N 1 0 k
13 oveq2 k = 0 0 k = 0 0
14 0m0e0 0 0 = 0
15 13 14 eqtrdi k = 0 0 k = 0
16 7 12 15 fprod1p N k = 0 N 1 0 k = 0 k = 0 + 1 N 1 0 k
17 fzfid N 0 + 1 N 1 Fin
18 elfzelz k 0 + 1 N 1 k
19 18 zcnd k 0 + 1 N 1 k
20 1 19 10 sylancr k 0 + 1 N 1 0 k
21 20 adantl N k 0 + 1 N 1 0 k
22 17 21 fprodcl N k = 0 + 1 N 1 0 k
23 22 mul02d N 0 k = 0 + 1 N 1 0 k = 0
24 4 16 23 3eqtrd N 0 N _ = 0