Metamath Proof Explorer
Theorem 0fi
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008) Avoid
ax-10 , ax-un . (Revised by BTernaryTau, 13-Jan-2025)
|
|
Ref |
Expression |
|
Assertion |
0fi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
|
2 |
|
eqid |
|
3 |
|
en0 |
|
4 |
2 3
|
mpbir |
|
5 |
|
breq2 |
|
6 |
5
|
rspcev |
|
7 |
1 4 6
|
mp2an |
|
8 |
|
isfi |
|
9 |
7 8
|
mpbir |
|