Metamath Proof Explorer


Theorem 0fi

Description: The empty set is finite. (Contributed by FL, 14-Jul-2008) Avoid ax-10 , ax-un . (Revised by BTernaryTau, 13-Jan-2025)

Ref Expression
Assertion 0fi Fin

Proof

Step Hyp Ref Expression
1 peano1 ω
2 eqid =
3 en0 =
4 2 3 mpbir
5 breq2 x = x
6 5 rspcev ω x ω x
7 1 4 6 mp2an x ω x
8 isfi Fin x ω x
9 7 8 mpbir Fin