Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finitely supported functions
0fsupp
Next ⟩
snopfsupp
Metamath Proof Explorer
Ascii
Unicode
Theorem
0fsupp
Description:
The empty set is a finitely supported function.
(Contributed by
AV
, 19-Jul-2019)
Ref
Expression
Assertion
0fsupp
⊢
Z
∈
V
→
finSupp
Z
⁡
∅
Proof
Step
Hyp
Ref
Expression
1
supp0
⊢
Z
∈
V
→
∅
supp
Z
=
∅
2
0fi
⊢
∅
∈
Fin
3
1
2
eqeltrdi
⊢
Z
∈
V
→
∅
supp
Z
∈
Fin
4
fun0
⊢
Fun
⁡
∅
5
0ex
⊢
∅
∈
V
6
funisfsupp
⊢
Fun
⁡
∅
∧
∅
∈
V
∧
Z
∈
V
→
finSupp
Z
⁡
∅
↔
∅
supp
Z
∈
Fin
7
4
5
6
mp3an12
⊢
Z
∈
V
→
finSupp
Z
⁡
∅
↔
∅
supp
Z
∈
Fin
8
3
7
mpbird
⊢
Z
∈
V
→
finSupp
Z
⁡
∅